nalgebra/src/geometry/isometry_ops.rs

537 lines
19 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// The macros break if the references are taken out, for some reason.
#![allow(clippy::op_ref)]
use num::{One, Zero};
use std::ops::{Div, DivAssign, Mul, MulAssign};
use simba::scalar::{ClosedAdd, ClosedMul};
use simba::simd::SimdRealField;
use crate::base::{SVector, Unit};
use crate::Scalar;
use crate::geometry::{
AbstractRotation, Isometry, Point, Rotation, Translation, UnitComplex, UnitQuaternion,
};
// TODO: there are several cloning of rotations that we could probably get rid of (but we didn't
// yet because that would require to add a bound like `where for<'a, 'b> &'a R: Mul<&'b R, Output = R>`
// which is quite ugly.
/*
*
* In this file, we provide:
* =========================
*
*
* (Operators)
*
* Isometry × Isometry
* Isometry × R
*
*
* Isometry ÷ Isometry
* Isometry ÷ R
*
* Isometry × Point
* Isometry × Vector
* Isometry × Unit<Vector>
*
*
* Isometry × Translation
* Translation × Isometry
* Translation × R -> Isometry<R>
*
* NOTE: The following are provided explicitly because we can't have R × Isometry.
* Rotation × Isometry<Rotation>
* UnitQuaternion × Isometry<UnitQuaternion>
*
* Rotation ÷ Isometry<Rotation>
* UnitQuaternion ÷ Isometry<UnitQuaternion>
*
* Rotation × Translation -> Isometry<Rotation>
* UnitQuaternion × Translation -> Isometry<UnitQuaternion>
*
*
* (Assignment Operators)
*
* Isometry ×= Translation
*
* Isometry ×= Isometry
* Isometry ×= R
*
* Isometry ÷= Isometry
* Isometry ÷= R
*
*/
macro_rules! isometry_binop_impl(
($Op: ident, $op: ident;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* T: SimdRealField, R, const D: usize> $Op<$Rhs> for $Lhs
where T::Element: SimdRealField,
R: AbstractRotation<T, D>, {
type Output = $Output;
#[inline]
fn $op($lhs, $rhs: $Rhs) -> Self::Output {
$action
}
}
}
);
macro_rules! isometry_binop_impl_all(
($Op: ident, $op: ident;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
[val val] => $action_val_val: expr;
[ref val] => $action_ref_val: expr;
[val ref] => $action_val_ref: expr;
[ref ref] => $action_ref_ref: expr;) => {
isometry_binop_impl!(
$Op, $op;
$lhs: $Lhs, $rhs: $Rhs, Output = $Output;
$action_val_val; );
isometry_binop_impl!(
$Op, $op;
$lhs: &'a $Lhs, $rhs: $Rhs, Output = $Output;
$action_ref_val; 'a);
isometry_binop_impl!(
$Op, $op;
$lhs: $Lhs, $rhs: &'b $Rhs, Output = $Output;
$action_val_ref; 'b);
isometry_binop_impl!(
$Op, $op;
$lhs: &'a $Lhs, $rhs: &'b $Rhs, Output = $Output;
$action_ref_ref; 'a, 'b);
}
);
macro_rules! isometry_binop_assign_impl_all(
($OpAssign: ident, $op_assign: ident;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty;
[val] => $action_val: expr;
[ref] => $action_ref: expr;) => {
impl<T: SimdRealField, R, const D: usize> $OpAssign<$Rhs> for $Lhs
where T::Element: SimdRealField,
R: AbstractRotation<T, D> {
#[inline]
fn $op_assign(&mut $lhs, $rhs: $Rhs) {
$action_val
}
}
impl<'b, T: SimdRealField, R, const D: usize> $OpAssign<&'b $Rhs> for $Lhs
where T::Element: SimdRealField,
R: AbstractRotation<T, D> {
#[inline]
fn $op_assign(&mut $lhs, $rhs: &'b $Rhs) {
$action_ref
}
}
}
);
// Isometry × Isometry
// Isometry ÷ Isometry
isometry_binop_impl_all!(
Mul, mul;
self: Isometry<T, R, D>, rhs: Isometry<T, R, D>, Output = Isometry<T, R, D>;
[val val] => &self * &rhs;
[ref val] => self * &rhs;
[val ref] => &self * rhs;
[ref ref] => {
let shift = self.rotation.transform_vector(&rhs.translation.vector);
#[allow(clippy::suspicious_arithmetic_impl)]
Isometry::from_parts(Translation::from(&self.translation.vector + shift),
self.rotation.clone() * rhs.rotation.clone()) // TODO: too bad we have to clone.
};
);
isometry_binop_impl_all!(
Div, div;
self: Isometry<T, R, D>, rhs: Isometry<T, R, D>, Output = Isometry<T, R, D>;
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * rhs.inverse() };
);
// Isometry ×= Translation
isometry_binop_assign_impl_all!(
MulAssign, mul_assign;
self: Isometry<T, R, D>, rhs: Translation<T, D>;
[val] => *self *= &rhs;
[ref] => #[allow(clippy::suspicious_op_assign_impl)] {
let shift = self.rotation.transform_vector(&rhs.vector);
self.translation.vector += shift;
};
);
// Isometry ×= Isometry
// Isometry ÷= Isometry
isometry_binop_assign_impl_all!(
MulAssign, mul_assign;
self: Isometry<T, R, D>, rhs: Isometry<T, R, D>;
[val] => *self *= &rhs;
[ref] => {
let shift = self.rotation.transform_vector(&rhs.translation.vector);
self.translation.vector += shift;
self.rotation *= rhs.rotation.clone();
};
);
isometry_binop_assign_impl_all!(
DivAssign, div_assign;
self: Isometry<T, R, D>, rhs: Isometry<T, R, D>;
[val] => *self /= &rhs;
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
);
// Isometry ×= R
// Isometry ÷= R
md_assign_impl_all!(
MulAssign, mul_assign where T: SimdRealField for T::Element: SimdRealField;
(Const<D>, U1), (Const<D>, Const<D>)
const D; for; where;
self: Isometry<T, Rotation<T, D>, D>, rhs: Rotation<T, D>;
[val] => self.rotation *= rhs;
[ref] => self.rotation *= rhs.clone();
);
md_assign_impl_all!(
DivAssign, div_assign where T: SimdRealField for T::Element: SimdRealField;
(Const<D>, U1), (Const<D>, Const<D>)
const D; for; where;
self: Isometry<T, Rotation<T, D>, D>, rhs: Rotation<T, D>;
// TODO: don't invert explicitly?
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
);
md_assign_impl_all!(
MulAssign, mul_assign where T: SimdRealField for T::Element: SimdRealField;
(U3, U3), (U3, U3)
const; for; where;
self: Isometry<T, UnitQuaternion<T>, 3>, rhs: UnitQuaternion<T>;
[val] => self.rotation *= rhs;
[ref] => self.rotation *= rhs.clone();
);
md_assign_impl_all!(
DivAssign, div_assign where T: SimdRealField for T::Element: SimdRealField;
(U3, U3), (U3, U3)
const; for; where;
self: Isometry<T, UnitQuaternion<T>, 3>, rhs: UnitQuaternion<T>;
// TODO: don't invert explicitly?
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
);
md_assign_impl_all!(
MulAssign, mul_assign where T: SimdRealField for T::Element: SimdRealField;
(U2, U2), (U2, U2)
const; for; where;
self: Isometry<T, UnitComplex<T>, 2>, rhs: UnitComplex<T>;
[val] => self.rotation *= rhs;
[ref] => self.rotation *= rhs.clone();
);
md_assign_impl_all!(
DivAssign, div_assign where T: SimdRealField for T::Element: SimdRealField;
(U2, U2), (U2, U2)
const; for; where;
self: Isometry<T, UnitComplex<T>, 2>, rhs: UnitComplex<T>;
// TODO: don't invert explicitly?
[val] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
[ref] => #[allow(clippy::suspicious_op_assign_impl)] { *self *= rhs.inverse() };
);
// Isometry × Point
isometry_binop_impl_all!(
Mul, mul;
self: Isometry<T, R, D>, right: Point<T, D>, Output = Point<T, D>;
[val val] => self.translation * self.rotation.transform_point(&right);
[ref val] => &self.translation * self.rotation.transform_point(&right);
[val ref] => self.translation * self.rotation.transform_point(right);
[ref ref] => &self.translation * self.rotation.transform_point(right);
);
// Isometry × Vector
isometry_binop_impl_all!(
Mul, mul;
// TODO: because of `transform_vector`, we cant use a generic storage type for the rhs vector,
// i.e., right: Vector<T, D, S> where S: Storage<T, D>.
self: Isometry<T, R, D>, right: SVector<T, D>, Output = SVector<T, D>;
[val val] => self.rotation.transform_vector(&right);
[ref val] => self.rotation.transform_vector(&right);
[val ref] => self.rotation.transform_vector(right);
[ref ref] => self.rotation.transform_vector(right);
);
// Isometry × Unit<Vector>
isometry_binop_impl_all!(
Mul, mul;
// TODO: because of `transform_vector`, we cant use a generic storage type for the rhs vector,
// i.e., right: Vector<T, D, S> where S: Storage<T, D>.
self: Isometry<T, R, D>, right: Unit<SVector<T, D>>, Output = Unit<SVector<T, D>>;
[val val] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref()));
[ref val] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref()));
[val ref] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref()));
[ref ref] => Unit::new_unchecked(self.rotation.transform_vector(right.as_ref()));
);
// Isometry × Translation
isometry_binop_impl_all!(
Mul, mul;
self: Isometry<T, R, D>, right: Translation<T, D>, Output = Isometry<T, R, D>;
[val val] => &self * &right;
[ref val] => self * &right;
[val ref] => &self * right;
[ref ref] => {
#[allow(clippy::suspicious_arithmetic_impl)]
let new_tr = &self.translation.vector + self.rotation.transform_vector(&right.vector);
Isometry::from_parts(Translation::from(new_tr), self.rotation.clone())
};
);
// Translation × Isometry
isometry_binop_impl_all!(
Mul, mul;
self: Translation<T, D>, right: Isometry<T, R, D>, Output = Isometry<T, R, D>;
[val val] => Isometry::from_parts(self * right.translation, right.rotation);
[ref val] => Isometry::from_parts(self * &right.translation, right.rotation);
[val ref] => Isometry::from_parts(self * &right.translation, right.rotation.clone());
[ref ref] => Isometry::from_parts(self * &right.translation, right.rotation.clone());
);
macro_rules! isometry_from_composition_impl(
($Op: ident, $op: ident;
$($Dims: ident),*;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
$action: expr; $($lives: tt),*) => {
impl<$($lives ,)* T: SimdRealField $(, const $Dims: usize)*> $Op<$Rhs> for $Lhs
where T::Element: SimdRealField {
type Output = $Output;
#[inline]
fn $op($lhs, $rhs: $Rhs) -> Self::Output {
$action
}
}
}
);
macro_rules! isometry_from_composition_impl_all(
($Op: ident, $op: ident;
$($Dims: ident),*;
$lhs: ident: $Lhs: ty, $rhs: ident: $Rhs: ty, Output = $Output: ty;
[val val] => $action_val_val: expr;
[ref val] => $action_ref_val: expr;
[val ref] => $action_val_ref: expr;
[ref ref] => $action_ref_ref: expr;) => {
isometry_from_composition_impl!(
$Op, $op;
$($Dims),*;
$lhs: $Lhs, $rhs: $Rhs, Output = $Output;
$action_val_val; );
isometry_from_composition_impl!(
$Op, $op;
$($Dims),*;
$lhs: &'a $Lhs, $rhs: $Rhs, Output = $Output;
$action_ref_val; 'a);
isometry_from_composition_impl!(
$Op, $op;
$($Dims),*;
$lhs: $Lhs, $rhs: &'b $Rhs, Output = $Output;
$action_val_ref; 'b);
isometry_from_composition_impl!(
$Op, $op;
$($Dims),*;
$lhs: &'a $Lhs, $rhs: &'b $Rhs, Output = $Output;
$action_ref_ref; 'a, 'b);
}
);
// Rotation × Translation
isometry_from_composition_impl_all!(
Mul, mul;
D;
self: Rotation<T, D>, right: Translation<T, D>, Output = Isometry<T, Rotation<T, D>, D>;
[val val] => Isometry::from_parts(Translation::from(&self * right.vector), self);
[ref val] => Isometry::from_parts(Translation::from(self * right.vector), self.clone());
[val ref] => Isometry::from_parts(Translation::from(&self * &right.vector), self);
[ref ref] => Isometry::from_parts(Translation::from(self * &right.vector), self.clone());
);
// UnitQuaternion × Translation
isometry_from_composition_impl_all!(
Mul, mul;
;
self: UnitQuaternion<T>, right: Translation<T, 3>,
Output = Isometry<T, UnitQuaternion<T>, 3>;
[val val] => Isometry::from_parts(Translation::from(&self * right.vector), self);
[ref val] => Isometry::from_parts(Translation::from( self * right.vector), self.clone());
[val ref] => Isometry::from_parts(Translation::from(&self * &right.vector), self);
[ref ref] => Isometry::from_parts(Translation::from( self * &right.vector), self.clone());
);
// Isometry × Rotation
isometry_from_composition_impl_all!(
Mul, mul;
D;
self: Isometry<T, Rotation<T, D>, D>, rhs: Rotation<T, D>,
Output = Isometry<T, Rotation<T, D>, D>;
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs);
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
);
// Rotation × Isometry
isometry_from_composition_impl_all!(
Mul, mul;
D;
self: Rotation<T, D>, right: Isometry<T, Rotation<T, D>, D>,
Output = Isometry<T, Rotation<T, D>, D>;
[val val] => &self * &right;
[ref val] => self * &right;
[val ref] => &self * right;
[ref ref] => {
let shift = self * &right.translation.vector;
Isometry::from_parts(Translation::from(shift), self * &right.rotation)
};
);
// Isometry ÷ Rotation
isometry_from_composition_impl_all!(
Div, div;
D;
self: Isometry<T, Rotation<T, D>, D>, rhs: Rotation<T, D>,
Output = Isometry<T, Rotation<T, D>, D>;
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs);
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
);
// Rotation ÷ Isometry
isometry_from_composition_impl_all!(
Div, div;
D;
self: Rotation<T, D>, right: Isometry<T, Rotation<T, D>, D>,
Output = Isometry<T, Rotation<T, D>, D>;
// TODO: don't call inverse explicitly?
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);
// Isometry × UnitQuaternion
isometry_from_composition_impl_all!(
Mul, mul;
;
self: Isometry<T, UnitQuaternion<T>, 3>, rhs: UnitQuaternion<T>,
Output = Isometry<T, UnitQuaternion<T>, 3>;
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs);
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
);
// UnitQuaternion × Isometry
isometry_from_composition_impl_all!(
Mul, mul;
;
self: UnitQuaternion<T>, right: Isometry<T, UnitQuaternion<T>, 3>,
Output = Isometry<T, UnitQuaternion<T>, 3>;
[val val] => &self * &right;
[ref val] => self * &right;
[val ref] => &self * right;
[ref ref] => {
let shift = self * &right.translation.vector;
Isometry::from_parts(Translation::from(shift), self * &right.rotation)
};
);
// Isometry ÷ UnitQuaternion
isometry_from_composition_impl_all!(
Div, div;
;
self: Isometry<T, UnitQuaternion<T>, 3>, rhs: UnitQuaternion<T>,
Output = Isometry<T, UnitQuaternion<T>, 3>;
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs);
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
);
// UnitQuaternion ÷ Isometry
isometry_from_composition_impl_all!(
Div, div;
;
self: UnitQuaternion<T>, right: Isometry<T, UnitQuaternion<T>, 3>,
Output = Isometry<T, UnitQuaternion<T>, 3>;
// TODO: don't call inverse explicitly?
[val val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref val] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[val ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
[ref ref] => #[allow(clippy::suspicious_arithmetic_impl)] { self * right.inverse() };
);
// Translation × Rotation
isometry_from_composition_impl_all!(
Mul, mul;
D;
self: Translation<T, D>, right: Rotation<T, D>, Output = Isometry<T, Rotation<T, D>, D>;
[val val] => Isometry::from_parts(self, right);
[ref val] => Isometry::from_parts(self.clone(), right);
[val ref] => Isometry::from_parts(self, right.clone());
[ref ref] => Isometry::from_parts(self.clone(), right.clone());
);
// Translation × UnitQuaternion
isometry_from_composition_impl_all!(
Mul, mul;
;
self: Translation<T, 3>, right: UnitQuaternion<T>, Output = Isometry<T, UnitQuaternion<T>, 3>;
[val val] => Isometry::from_parts(self, right);
[ref val] => Isometry::from_parts(self.clone(), right);
[val ref] => Isometry::from_parts(self, right.clone());
[ref ref] => Isometry::from_parts(self.clone(), right.clone());
);
// Isometry × UnitComplex
isometry_from_composition_impl_all!(
Mul, mul;
;
self: Isometry<T, UnitComplex<T>, 2>, rhs: UnitComplex<T>,
Output = Isometry<T, UnitComplex<T>, 2>;
[val val] => Isometry::from_parts(self.translation, self.rotation * rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs);
[val ref] => Isometry::from_parts(self.translation, self.rotation * rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() * rhs.clone());
);
// Isometry ÷ UnitComplex
isometry_from_composition_impl_all!(
Div, div;
;
self: Isometry<T, UnitComplex<T>, 2>, rhs: UnitComplex<T>,
Output = Isometry<T, UnitComplex<T>, 2>;
[val val] => Isometry::from_parts(self.translation, self.rotation / rhs);
[ref val] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs);
[val ref] => Isometry::from_parts(self.translation, self.rotation / rhs.clone());
[ref ref] => Isometry::from_parts(self.translation.clone(), self.rotation.clone() / rhs.clone());
);