nalgebra/src/structs/iso_macros.rs
Sébastien Crozet 06e18d214a Update to the last Rust.
Version of rustc: 0.10-pre (b8ef9fd 2014-03-31 15:51:33 -0700)

struct fields are now public by default.
2014-04-01 23:00:59 +02:00

358 lines
10 KiB
Rust

#![macro_escape]
macro_rules! iso_impl(
($t: ident, $submat: ident, $subvec: ident, $subrotvec: ident) => (
impl<N: Clone + Float + Float + Num> $t<N> {
/// Creates a new isometry from a rotation matrix and a vector.
#[inline]
pub fn new(translation: $subvec<N>, rotation: $subrotvec<N>) -> $t<N> {
$t {
rotation: $submat::new(rotation),
translation: translation
}
}
/// Creates a new isometry from a rotation matrix and a vector.
#[inline]
pub fn new_with_rotmat(translation: $subvec<N>, rotation: $submat<N>) -> $t<N> {
$t {
rotation: rotation,
translation: translation
}
}
}
)
)
macro_rules! rotation_matrix_impl(
($t: ident, $trot: ident, $tlv: ident, $tav: ident) => (
impl<N: Cast<f32> + Float + Float + Num + Clone>
RotationMatrix<$tlv<N>, $tav<N>, $trot<N>> for $t<N> {
#[inline]
fn to_rot_mat(&self) -> $trot<N> {
self.rotation.clone()
}
}
)
)
macro_rules! dim_impl(
($t: ident, $dim: expr) => (
impl<N> Dim for $t<N> {
#[inline]
fn dim(_: Option<$t<N>>) -> uint {
$dim
}
}
)
)
macro_rules! one_impl(
($t: ident) => (
impl<N: Float + Float + Num + Clone> One for $t<N> {
#[inline]
fn one() -> $t<N> {
$t::new_with_rotmat(Zero::zero(), One::one())
}
}
)
)
macro_rules! iso_mul_iso_impl(
($t: ident, $tmul: ident) => (
impl<N: Num + Float + Float + Clone> $tmul<N, $t<N>> for $t<N> {
#[inline]
fn binop(left: &$t<N>, right: &$t<N>) -> $t<N> {
$t::new_with_rotmat(
left.translation + left.rotation * right.translation,
left.rotation * right.rotation)
}
}
)
)
macro_rules! iso_mul_vec_impl(
($t: ident, $tv: ident, $tmul: ident) => (
impl<N: Num + Clone> $tmul<N, $tv<N>> for $tv<N> {
#[inline]
fn binop(left: &$t<N>, right: &$tv<N>) -> $tv<N> {
left.translation + left.rotation * *right
}
}
)
)
macro_rules! vec_mul_iso_impl(
($t: ident, $tv: ident, $tmul: ident) => (
impl<N: Clone + Num> $tmul<N, $tv<N>> for $t<N> {
#[inline]
fn binop(left: &$tv<N>, right: &$t<N>) -> $tv<N> {
(left + right.translation) * right.rotation
}
}
)
)
macro_rules! translation_impl(
($t: ident, $tv: ident) => (
impl<N: Float + Num + Float + Clone> Translation<$tv<N>> for $t<N> {
#[inline]
fn translation(&self) -> $tv<N> {
self.translation.clone()
}
#[inline]
fn inv_translation(&self) -> $tv<N> {
-self.translation
}
#[inline]
fn append_translation(&mut self, t: &$tv<N>) {
self.translation = *t + self.translation
}
#[inline]
fn append_translation_cpy(iso: &$t<N>, t: &$tv<N>) -> $t<N> {
$t::new_with_rotmat(*t + iso.translation, iso.rotation.clone())
}
#[inline]
fn prepend_translation(&mut self, t: &$tv<N>) {
self.translation = self.translation + self.rotation * *t
}
#[inline]
fn prepend_translation_cpy(iso: &$t<N>, t: &$tv<N>) -> $t<N> {
$t::new_with_rotmat(iso.translation + iso.rotation * *t, iso.rotation.clone())
}
#[inline]
fn set_translation(&mut self, t: $tv<N>) {
self.translation = t
}
}
)
)
macro_rules! translate_impl(
($t: ident, $tv: ident) => (
impl<N: Clone + Add<N, N> + Sub<N, N>> Translate<$tv<N>> for $t<N> {
#[inline]
fn translate(&self, v: &$tv<N>) -> $tv<N> {
v + self.translation
}
#[inline]
fn inv_translate(&self, v: &$tv<N>) -> $tv<N> {
v - self.translation
}
}
)
)
macro_rules! rotation_impl(
($t: ident, $trot: ident, $tav: ident) => (
impl<N: Cast<f32> + Num + Float + Float + Clone> Rotation<$tav<N>> for $t<N> {
#[inline]
fn rotation(&self) -> $tav<N> {
self.rotation.rotation()
}
#[inline]
fn inv_rotation(&self) -> $tav<N> {
self.rotation.inv_rotation()
}
#[inline]
fn append_rotation(&mut self, rot: &$tav<N>) {
let delta = $trot::new(rot.clone());
self.rotation = delta * self.rotation;
self.translation = delta * self.translation;
}
#[inline]
fn append_rotation_cpy(t: &$t<N>, rot: &$tav<N>) -> $t<N> {
let delta = $trot::new(rot.clone());
$t::new_with_rotmat(delta * t.translation, delta * t.rotation)
}
#[inline]
fn prepend_rotation(&mut self, rot: &$tav<N>) {
let delta = $trot::new(rot.clone());
self.rotation = self.rotation * delta;
}
#[inline]
fn prepend_rotation_cpy(t: &$t<N>, rot: &$tav<N>) -> $t<N> {
let delta = $trot::new(rot.clone());
$t::new_with_rotmat(t.translation.clone(), t.rotation * delta)
}
#[inline]
fn set_rotation(&mut self, rot: $tav<N>) {
// FIXME: should the translation be changed too?
self.rotation.set_rotation(rot)
}
}
)
)
macro_rules! rotate_impl(
($t: ident, $tv: ident) => (
impl<N: Num + Clone> Rotate<$tv<N>> for $t<N> {
#[inline]
fn rotate(&self, v: &$tv<N>) -> $tv<N> {
self.rotation.rotate(v)
}
#[inline]
fn inv_rotate(&self, v: &$tv<N>) -> $tv<N> {
self.rotation.inv_rotate(v)
}
}
)
)
macro_rules! transformation_impl(
($t: ident) => (
impl<N: Num + Float + Float + Clone> Transformation<$t<N>> for $t<N> {
fn transformation(&self) -> $t<N> {
self.clone()
}
fn inv_transformation(&self) -> $t<N> {
// inversion will never fails
Inv::inv_cpy(self).unwrap()
}
fn append_transformation(&mut self, t: &$t<N>) {
*self = *t * *self
}
fn append_transformation_cpy(iso: &$t<N>, t: &$t<N>) -> $t<N> {
t * *iso
}
fn prepend_transformation(&mut self, t: &$t<N>) {
*self = *self * *t
}
fn prepend_transformation_cpy(iso: &$t<N>, t: &$t<N>) -> $t<N> {
*iso * *t
}
fn set_transformation(&mut self, t: $t<N>) {
*self = t
}
}
)
)
macro_rules! transform_impl(
($t: ident, $tv: ident) => (
impl<N: Num + Clone> Transform<$tv<N>> for $t<N> {
#[inline]
fn transform(&self, v: &$tv<N>) -> $tv<N> {
self.rotation.transform(v) + self.translation
}
#[inline]
fn inv_transform(&self, v: &$tv<N>) -> $tv<N> {
self.rotation.inv_transform(&(v - self.translation))
}
}
)
)
macro_rules! inv_impl(
($t: ident) => (
impl<N: Clone + Num> Inv for $t<N> {
#[inline]
fn inv(&mut self) -> bool {
self.rotation.inv();
self.translation = self.rotation * -self.translation;
// always succeed
true
}
#[inline]
fn inv_cpy(m: &$t<N>) -> Option<$t<N>> {
let mut res = m.clone();
res.inv();
// always succeed
Some(res)
}
}
)
)
macro_rules! to_homogeneous_impl(
($t: ident, $th: ident) => (
impl<N: Num + Clone> ToHomogeneous<$th<N>> for $t<N> {
fn to_homogeneous(m: &$t<N>) -> $th<N> {
let mut res = ToHomogeneous::to_homogeneous(&m.rotation);
// copy the translation
let dim = Dim::dim(None::<$th<N>>);
res.set_col(dim - 1, ToHomogeneous::to_homogeneous(&m.translation));
res
}
}
)
)
macro_rules! approx_eq_impl(
($t: ident) => (
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
#[inline]
fn approx_epsilon(_: Option<$t<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_eq(a: &$t<N>, b: &$t<N>) -> bool {
ApproxEq::approx_eq(&a.rotation, &b.rotation) &&
ApproxEq::approx_eq(&a.translation, &b.translation)
}
#[inline]
fn approx_eq_eps(a: &$t<N>, b: &$t<N>, epsilon: &N) -> bool {
ApproxEq::approx_eq_eps(&a.rotation, &b.rotation, epsilon) &&
ApproxEq::approx_eq_eps(&a.translation, &b.translation, epsilon)
}
}
)
)
macro_rules! rand_impl(
($t: ident) => (
impl<N: Rand + Clone + Float + Float + Num> Rand for $t<N> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> $t<N> {
$t::new(rng.gen(), rng.gen())
}
}
)
)
macro_rules! absolute_rotate_impl(
($t: ident, $tv: ident) => (
impl<N: Signed> AbsoluteRotate<$tv<N>> for $t<N> {
#[inline]
fn absolute_rotate(&self, v: &$tv<N>) -> $tv<N> {
self.rotation.absolute_rotate(v)
}
}
)
)