nalgebra/src/linalg/svd.rs
2022-03-09 21:04:43 -05:00

904 lines
34 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};
use std::any::TypeId;
use approx::AbsDiffEq;
use num::{One, Zero};
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix, Matrix2x3, OMatrix, OVector, Vector2};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimDiff, DimMin, DimMinimum, DimSub, U1};
use crate::storage::Storage;
use crate::{Matrix2, Matrix3, RawStorage, U2, U3};
use simba::scalar::{ComplexField, RealField};
use crate::linalg::givens::GivensRotation;
use crate::linalg::symmetric_eigen;
use crate::linalg::Bidiagonal;
/// Singular Value Decomposition of a general matrix.
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(
serialize = "DefaultAllocator: Allocator<T::RealField, DimMinimum<R, C>> +
Allocator<T, DimMinimum<R, C>, C> +
Allocator<T, R, DimMinimum<R, C>>,
OMatrix<T, R, DimMinimum<R, C>>: Serialize,
OMatrix<T, DimMinimum<R, C>, C>: Serialize,
OVector<T::RealField, DimMinimum<R, C>>: Serialize"
))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(
deserialize = "DefaultAllocator: Allocator<T::RealField, DimMinimum<R, C>> +
Allocator<T, DimMinimum<R, C>, C> +
Allocator<T, R, DimMinimum<R, C>>,
OMatrix<T, R, DimMinimum<R, C>>: Deserialize<'de>,
OMatrix<T, DimMinimum<R, C>, C>: Deserialize<'de>,
OVector<T::RealField, DimMinimum<R, C>>: Deserialize<'de>"
))
)]
#[derive(Clone, Debug)]
pub struct SVD<T: ComplexField, R: DimMin<C>, C: Dim>
where
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>,
{
/// The left-singular vectors `U` of this SVD.
pub u: Option<OMatrix<T, R, DimMinimum<R, C>>>,
/// The right-singular vectors `V^t` of this SVD.
pub v_t: Option<OMatrix<T, DimMinimum<R, C>, C>>,
/// The singular values of this SVD.
pub singular_values: OVector<T::RealField, DimMinimum<R, C>>,
}
impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for SVD<T, R, C>
where
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>,
OMatrix<T, R, DimMinimum<R, C>>: Copy,
OMatrix<T, DimMinimum<R, C>, C>: Copy,
OVector<T::RealField, DimMinimum<R, C>>: Copy,
{
}
impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
where
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
{
fn use_special_always_ordered_svd2() -> bool {
TypeId::of::<OMatrix<T, R, C>>() == TypeId::of::<Matrix2<T::RealField>>()
&& TypeId::of::<Self>() == TypeId::of::<SVD<T::RealField, U2, U2>>()
}
fn use_special_always_ordered_svd3() -> bool {
TypeId::of::<OMatrix<T, R, C>>() == TypeId::of::<Matrix3<T::RealField>>()
&& TypeId::of::<Self>() == TypeId::of::<SVD<T::RealField, U3, U3>>()
}
/// Computes the Singular Value Decomposition of `matrix` using implicit shift.
/// The singular values are not guaranteed to be sorted in any particular order.
/// If a descending order is required, consider using `new` instead.
pub fn new_unordered(matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool) -> Self {
Self::try_new_unordered(
matrix,
compute_u,
compute_v,
T::RealField::default_epsilon() * crate::convert(5.0),
0,
)
.unwrap()
}
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
/// The singular values are not guaranteed to be sorted in any particular order.
/// If a descending order is required, consider using `try_new` instead.
///
/// # Arguments
///
/// * `compute_u` set this to `true` to enable the computation of left-singular vectors.
/// * `compute_v` set this to `true` to enable the computation of right-singular vectors.
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_new_unordered(
mut matrix: OMatrix<T, R, C>,
compute_u: bool,
compute_v: bool,
eps: T::RealField,
max_niter: usize,
) -> Option<Self> {
assert!(
!matrix.is_empty(),
"Cannot compute the SVD of an empty matrix."
);
let (nrows, ncols) = matrix.shape_generic();
let min_nrows_ncols = nrows.min(ncols);
if Self::use_special_always_ordered_svd2() {
// SAFETY: the reference transmutes are OK since we checked that the types match exactly.
let matrix: &Matrix2<T::RealField> = unsafe { std::mem::transmute(&matrix) };
let result = super::svd2::svd_ordered2(matrix, compute_u, compute_v);
let typed_result: &Self = unsafe { std::mem::transmute(&result) };
return Some(typed_result.clone());
} else if Self::use_special_always_ordered_svd3() {
// SAFETY: the reference transmutes are OK since we checked that the types match exactly.
let matrix: &Matrix3<T::RealField> = unsafe { std::mem::transmute(&matrix) };
let result = super::svd3::svd_ordered3(matrix, compute_u, compute_v, eps, max_niter);
let typed_result: &Self = unsafe { std::mem::transmute(&result) };
return Some(typed_result.clone());
}
let dim = min_nrows_ncols.value();
let m_amax = matrix.camax();
if !m_amax.is_zero() {
matrix.unscale_mut(m_amax.clone());
}
let bi_matrix = Bidiagonal::new(matrix);
let mut u = if compute_u { Some(bi_matrix.u()) } else { None };
let mut v_t = if compute_v {
Some(bi_matrix.v_t())
} else {
None
};
let mut diagonal = bi_matrix.diagonal();
let mut off_diagonal = bi_matrix.off_diagonal();
let mut niter = 0;
let (mut start, mut end) = Self::delimit_subproblem(
&mut diagonal,
&mut off_diagonal,
&mut u,
&mut v_t,
bi_matrix.is_upper_diagonal(),
dim - 1,
eps.clone(),
);
while end != start {
let subdim = end - start + 1;
// Solve the subproblem.
#[allow(clippy::comparison_chain)]
if subdim > 2 {
let m = end - 1;
let n = end;
let mut vec;
{
let dm = diagonal[m].clone();
let dn = diagonal[n].clone();
let fm = off_diagonal[m].clone();
let tmm = dm.clone() * dm.clone()
+ off_diagonal[m - 1].clone() * off_diagonal[m - 1].clone();
let tmn = dm * fm.clone();
let tnn = dn.clone() * dn + fm.clone() * fm;
let shift = symmetric_eigen::wilkinson_shift(tmm, tnn, tmn);
vec = Vector2::new(
diagonal[start].clone() * diagonal[start].clone() - shift,
diagonal[start].clone() * off_diagonal[start].clone(),
);
}
for k in start..n {
let m12 = if k == n - 1 {
T::RealField::zero()
} else {
off_diagonal[k + 1].clone()
};
let mut subm = Matrix2x3::new(
diagonal[k].clone(),
off_diagonal[k].clone(),
T::RealField::zero(),
T::RealField::zero(),
diagonal[k + 1].clone(),
m12,
);
if let Some((rot1, norm1)) = GivensRotation::cancel_y(&vec) {
rot1.inverse()
.rotate_rows(&mut subm.fixed_columns_mut::<2>(0));
let rot1 = GivensRotation::new_unchecked(rot1.c(), T::from_real(rot1.s()));
if k > start {
// This is not the first iteration.
off_diagonal[k - 1] = norm1;
}
let v = Vector2::new(subm[(0, 0)].clone(), subm[(1, 0)].clone());
// TODO: does the case `v.y == 0` ever happen?
let (rot2, norm2) = GivensRotation::cancel_y(&v)
.unwrap_or((GivensRotation::identity(), subm[(0, 0)].clone()));
rot2.rotate(&mut subm.fixed_columns_mut::<2>(1));
let rot2 = GivensRotation::new_unchecked(rot2.c(), T::from_real(rot2.s()));
subm[(0, 0)] = norm2;
if let Some(ref mut v_t) = v_t {
if bi_matrix.is_upper_diagonal() {
rot1.rotate(&mut v_t.fixed_rows_mut::<2>(k));
} else {
rot2.rotate(&mut v_t.fixed_rows_mut::<2>(k));
}
}
if let Some(ref mut u) = u {
if bi_matrix.is_upper_diagonal() {
rot2.inverse().rotate_rows(&mut u.fixed_columns_mut::<2>(k));
} else {
rot1.inverse().rotate_rows(&mut u.fixed_columns_mut::<2>(k));
}
}
diagonal[k] = subm[(0, 0)].clone();
diagonal[k + 1] = subm[(1, 1)].clone();
off_diagonal[k] = subm[(0, 1)].clone();
if k != n - 1 {
off_diagonal[k + 1] = subm[(1, 2)].clone();
}
vec.x = subm[(0, 1)].clone();
vec.y = subm[(0, 2)].clone();
} else {
break;
}
}
} else if subdim == 2 {
// Solve the remaining 2x2 subproblem.
let (u2, s, v2) = compute_2x2_uptrig_svd(
diagonal[start].clone(),
off_diagonal[start].clone(),
diagonal[start + 1].clone(),
compute_u && bi_matrix.is_upper_diagonal()
|| compute_v && !bi_matrix.is_upper_diagonal(),
compute_v && bi_matrix.is_upper_diagonal()
|| compute_u && !bi_matrix.is_upper_diagonal(),
);
let u2 = u2.map(|u2| GivensRotation::new_unchecked(u2.c(), T::from_real(u2.s())));
let v2 = v2.map(|v2| GivensRotation::new_unchecked(v2.c(), T::from_real(v2.s())));
diagonal[start] = s[0].clone();
diagonal[start + 1] = s[1].clone();
off_diagonal[start] = T::RealField::zero();
if let Some(ref mut u) = u {
let rot = if bi_matrix.is_upper_diagonal() {
u2.clone().unwrap()
} else {
v2.clone().unwrap()
};
rot.rotate_rows(&mut u.fixed_columns_mut::<2>(start));
}
if let Some(ref mut v_t) = v_t {
let rot = if bi_matrix.is_upper_diagonal() {
v2.unwrap()
} else {
u2.unwrap()
};
rot.inverse().rotate(&mut v_t.fixed_rows_mut::<2>(start));
}
end -= 1;
}
// Re-delimit the subproblem in case some decoupling occurred.
let sub = Self::delimit_subproblem(
&mut diagonal,
&mut off_diagonal,
&mut u,
&mut v_t,
bi_matrix.is_upper_diagonal(),
end,
eps.clone(),
);
start = sub.0;
end = sub.1;
niter += 1;
if niter == max_niter {
return None;
}
}
diagonal *= m_amax;
// Ensure all singular value are non-negative.
for i in 0..dim {
let sval = diagonal[i].clone();
if sval < T::RealField::zero() {
diagonal[i] = -sval;
if let Some(ref mut u) = u {
u.column_mut(i).neg_mut();
}
}
}
Some(Self {
u,
v_t,
singular_values: diagonal,
})
}
/*
fn display_bidiag(b: &Bidiagonal<T, R, C>, begin: usize, end: usize) {
for i in begin .. end {
for k in begin .. i {
print!(" ");
}
println!("{} {}", b.diagonal[i], b.off_diagonal[i]);
}
for k in begin .. end {
print!(" ");
}
println!("{}", b.diagonal[end]);
}
*/
fn delimit_subproblem(
diagonal: &mut OVector<T::RealField, DimMinimum<R, C>>,
off_diagonal: &mut OVector<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
u: &mut Option<OMatrix<T, R, DimMinimum<R, C>>>,
v_t: &mut Option<OMatrix<T, DimMinimum<R, C>, C>>,
is_upper_diagonal: bool,
end: usize,
eps: T::RealField,
) -> (usize, usize) {
let mut n = end;
while n > 0 {
let m = n - 1;
if off_diagonal[m].is_zero()
|| off_diagonal[m].clone().norm1()
<= eps.clone() * (diagonal[n].clone().norm1() + diagonal[m].clone().norm1())
{
off_diagonal[m] = T::RealField::zero();
} else if diagonal[m].clone().norm1() <= eps {
diagonal[m] = T::RealField::zero();
Self::cancel_horizontal_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m,
m + 1,
);
if m != 0 {
Self::cancel_vertical_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m - 1,
);
}
} else if diagonal[n].clone().norm1() <= eps {
diagonal[n] = T::RealField::zero();
Self::cancel_vertical_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m,
);
} else {
break;
}
n -= 1;
}
if n == 0 {
return (0, 0);
}
let mut new_start = n - 1;
while new_start > 0 {
let m = new_start - 1;
if off_diagonal[m].clone().norm1()
<= eps.clone() * (diagonal[new_start].clone().norm1() + diagonal[m].clone().norm1())
{
off_diagonal[m] = T::RealField::zero();
break;
}
// TODO: write a test that enters this case.
else if diagonal[m].clone().norm1() <= eps {
diagonal[m] = T::RealField::zero();
Self::cancel_horizontal_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m,
n,
);
if m != 0 {
Self::cancel_vertical_off_diagonal_elt(
diagonal,
off_diagonal,
u,
v_t,
is_upper_diagonal,
m - 1,
);
}
break;
}
new_start -= 1;
}
(new_start, n)
}
// Cancels the i-th off-diagonal element using givens rotations.
fn cancel_horizontal_off_diagonal_elt(
diagonal: &mut OVector<T::RealField, DimMinimum<R, C>>,
off_diagonal: &mut OVector<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
u: &mut Option<OMatrix<T, R, DimMinimum<R, C>>>,
v_t: &mut Option<OMatrix<T, DimMinimum<R, C>, C>>,
is_upper_diagonal: bool,
i: usize,
end: usize,
) {
let mut v = Vector2::new(off_diagonal[i].clone(), diagonal[i + 1].clone());
off_diagonal[i] = T::RealField::zero();
for k in i..end {
if let Some((rot, norm)) = GivensRotation::cancel_x(&v) {
let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
diagonal[k + 1] = norm;
if is_upper_diagonal {
if let Some(ref mut u) = *u {
rot.inverse()
.rotate_rows(&mut u.fixed_columns_with_step_mut::<2>(i, k - i));
}
} else if let Some(ref mut v_t) = *v_t {
rot.rotate(&mut v_t.fixed_rows_with_step_mut::<2>(i, k - i));
}
if k + 1 != end {
v.x = -rot.s().real() * off_diagonal[k + 1].clone();
v.y = diagonal[k + 2].clone();
off_diagonal[k + 1] *= rot.c();
}
} else {
break;
}
}
}
// Cancels the i-th off-diagonal element using givens rotations.
fn cancel_vertical_off_diagonal_elt(
diagonal: &mut OVector<T::RealField, DimMinimum<R, C>>,
off_diagonal: &mut OVector<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
u: &mut Option<OMatrix<T, R, DimMinimum<R, C>>>,
v_t: &mut Option<OMatrix<T, DimMinimum<R, C>, C>>,
is_upper_diagonal: bool,
i: usize,
) {
let mut v = Vector2::new(diagonal[i].clone(), off_diagonal[i].clone());
off_diagonal[i] = T::RealField::zero();
for k in (0..i + 1).rev() {
if let Some((rot, norm)) = GivensRotation::cancel_y(&v) {
let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
diagonal[k] = norm;
if is_upper_diagonal {
if let Some(ref mut v_t) = *v_t {
rot.rotate(&mut v_t.fixed_rows_with_step_mut::<2>(k, i - k));
}
} else if let Some(ref mut u) = *u {
rot.inverse()
.rotate_rows(&mut u.fixed_columns_with_step_mut::<2>(k, i - k));
}
if k > 0 {
v.x = diagonal[k - 1].clone();
v.y = rot.s().real() * off_diagonal[k - 1].clone();
off_diagonal[k - 1] *= rot.c();
}
} else {
break;
}
}
}
/// Computes the rank of the decomposed matrix, i.e., the number of singular values greater
/// than `eps`.
#[must_use]
pub fn rank(&self, eps: T::RealField) -> usize {
assert!(
eps >= T::RealField::zero(),
"SVD rank: the epsilon must be non-negative."
);
self.singular_values.iter().filter(|e| **e > eps).count()
}
/// Rebuild the original matrix.
///
/// This is useful if some of the singular values have been manually modified.
/// Returns `Err` if the right- and left- singular vectors have not been
/// computed at construction-time.
pub fn recompose(self) -> Result<OMatrix<T, R, C>, &'static str> {
match (self.u, self.v_t) {
(Some(mut u), Some(v_t)) => {
for i in 0..self.singular_values.len() {
let val = self.singular_values[i].clone();
u.column_mut(i).scale_mut(val);
}
Ok(u * v_t)
}
(None, None) => Err("SVD recomposition: U and V^t have not been computed."),
(None, _) => Err("SVD recomposition: U has not been computed."),
(_, None) => Err("SVD recomposition: V^t has not been computed."),
}
}
/// Computes the pseudo-inverse of the decomposed matrix.
///
/// Any singular value smaller than `eps` is assumed to be zero.
/// Returns `Err` if the right- and left- singular vectors have not
/// been computed at construction-time.
pub fn pseudo_inverse(mut self, eps: T::RealField) -> Result<OMatrix<T, C, R>, &'static str>
where
DefaultAllocator: Allocator<T, C, R>,
{
if eps < T::RealField::zero() {
Err("SVD pseudo inverse: the epsilon must be non-negative.")
} else {
for i in 0..self.singular_values.len() {
let val = self.singular_values[i].clone();
if val > eps {
self.singular_values[i] = T::RealField::one() / val;
} else {
self.singular_values[i] = T::RealField::zero();
}
}
self.recompose().map(|m| m.adjoint())
}
}
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
///
/// Any singular value smaller than `eps` is assumed to be zero.
/// Returns `Err` if the singular vectors `U` and `V` have not been computed.
// TODO: make this more generic wrt the storage types and the dimensions for `b`.
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
eps: T::RealField,
) -> Result<OMatrix<T, C, C2>, &'static str>
where
S2: Storage<T, R2, C2>,
DefaultAllocator: Allocator<T, C, C2> + Allocator<T, DimMinimum<R, C>, C2>,
ShapeConstraint: SameNumberOfRows<R, R2>,
{
if eps < T::RealField::zero() {
Err("SVD solve: the epsilon must be non-negative.")
} else {
match (&self.u, &self.v_t) {
(Some(u), Some(v_t)) => {
let mut ut_b = u.ad_mul(b);
for j in 0..ut_b.ncols() {
let mut col = ut_b.column_mut(j);
for i in 0..self.singular_values.len() {
let val = self.singular_values[i].clone();
if val > eps {
col[i] = col[i].clone().unscale(val);
} else {
col[i] = T::zero();
}
}
}
Ok(v_t.ad_mul(&ut_b))
}
(None, None) => Err("SVD solve: U and V^t have not been computed."),
(None, _) => Err("SVD solve: U has not been computed."),
(_, None) => Err("SVD solve: V^t has not been computed."),
}
}
}
/// converts SVD results to Polar decomposition form of the original Matrix: `A = P' * U`.
///
/// The polar decomposition used here is Left Polar Decomposition (or Reverse Polar Decomposition)
/// Returns None if the singular vectors of the SVD haven't been calculated
pub fn to_polar(&self) -> Option<(OMatrix<T, R, R>, OMatrix<T, R, C>)>
where
DefaultAllocator: Allocator<T, R, C> //result
+ Allocator<T, DimMinimum<R, C>, R> // adjoint
+ Allocator<T, DimMinimum<R, C>> // mapped vals
+ Allocator<T, R, R> // result
+ Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>, // square matrix
{
match (&self.u, &self.v_t) {
(Some(u), Some(v_t)) => Some((
u * OMatrix::from_diagonal(&self.singular_values.map(|e| T::from_real(e)))
* u.adjoint(),
u * v_t,
)),
_ => None,
}
}
}
impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
where
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<(usize, usize), DimMinimum<R, C>> // for sorted singular values
+ Allocator<(T::RealField, usize), DimMinimum<R, C>>, // for sorted singular values
{
/// Computes the Singular Value Decomposition of `matrix` using implicit shift.
/// The singular values are guaranteed to be sorted in descending order.
/// If this order is not required consider using `new_unordered`.
pub fn new(matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool) -> Self {
let mut svd = Self::new_unordered(matrix, compute_u, compute_v);
if !Self::use_special_always_ordered_svd3() && !Self::use_special_always_ordered_svd2() {
svd.sort_by_singular_values();
}
svd
}
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
/// The singular values are guaranteed to be sorted in descending order.
/// If this order is not required consider using `try_new_unordered`.
///
/// # Arguments
///
/// * `compute_u` set this to `true` to enable the computation of left-singular vectors.
/// * `compute_v` set this to `true` to enable the computation of right-singular vectors.
/// * `eps` tolerance used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_new(
matrix: OMatrix<T, R, C>,
compute_u: bool,
compute_v: bool,
eps: T::RealField,
max_niter: usize,
) -> Option<Self> {
Self::try_new_unordered(matrix, compute_u, compute_v, eps, max_niter).map(|mut svd| {
if !Self::use_special_always_ordered_svd3() && !Self::use_special_always_ordered_svd2()
{
svd.sort_by_singular_values();
}
svd
})
}
/// Sort the estimated components of the SVD by its singular values in descending order.
/// Such an ordering is often implicitly required when the decompositions are used for estimation or fitting purposes.
/// Using this function is only required if `new_unordered` or `try_new_unorderd` were used and the specific sorting is required afterward.
pub fn sort_by_singular_values(&mut self) {
const VALUE_PROCESSED: usize = usize::MAX;
// Collect the singular values with their original index, ...
let mut singular_values = self.singular_values.map_with_location(|r, _, e| (e, r));
assert_ne!(
singular_values.data.shape().0.value(),
VALUE_PROCESSED,
"Too many singular values"
);
// ... sort the singular values, ...
singular_values
.as_mut_slice()
.sort_unstable_by(|(a, _), (b, _)| b.partial_cmp(a).expect("Singular value was NaN"));
// ... and store them.
self.singular_values
.zip_apply(&singular_values, |value, (new_value, _)| {
value.clone_from(&new_value)
});
// Calculate required permutations given the sorted indices.
// We need to identify all circles to calculate the required swaps.
let mut permutations =
crate::PermutationSequence::identity_generic(singular_values.data.shape().0);
for i in 0..singular_values.len() {
let mut index_1 = i;
let mut index_2 = singular_values[i].1;
// Check whether the value was already visited ...
while index_2 != VALUE_PROCESSED // ... or a "double swap" must be avoided.
&& singular_values[index_2].1 != VALUE_PROCESSED
{
// Add the permutation ...
permutations.append_permutation(index_1, index_2);
// ... and mark the value as visited.
singular_values[index_1].1 = VALUE_PROCESSED;
index_1 = index_2;
index_2 = singular_values[index_1].1;
}
}
// Permute the optional components
if let Some(u) = self.u.as_mut() {
permutations.permute_columns(u);
}
if let Some(v_t) = self.v_t.as_mut() {
permutations.permute_rows(v_t);
}
}
}
impl<T: ComplexField, R: DimMin<C>, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S>
where
DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
{
/// Computes the singular values of this matrix.
/// The singular values are not guaranteed to be sorted in any particular order.
/// If a descending order is required, consider using `singular_values` instead.
#[must_use]
pub fn singular_values_unordered(&self) -> OVector<T::RealField, DimMinimum<R, C>> {
SVD::new_unordered(self.clone_owned(), false, false).singular_values
}
/// Computes the rank of this matrix.
///
/// All singular values below `eps` are considered equal to 0.
#[must_use]
pub fn rank(&self, eps: T::RealField) -> usize {
let svd = SVD::new_unordered(self.clone_owned(), false, false);
svd.rank(eps)
}
/// Computes the pseudo-inverse of this matrix.
///
/// All singular values below `eps` are considered equal to 0.
pub fn pseudo_inverse(self, eps: T::RealField) -> Result<OMatrix<T, C, R>, &'static str>
where
DefaultAllocator: Allocator<T, C, R>,
{
SVD::new_unordered(self.clone_owned(), true, true).pseudo_inverse(eps)
}
}
impl<T: ComplexField, R: DimMin<C>, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S>
where
DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, C>
+ Allocator<T, R>
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<T, DimMinimum<R, C>, C>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>>
+ Allocator<T::RealField, DimMinimum<R, C>>
+ Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>
+ Allocator<(usize, usize), DimMinimum<R, C>>
+ Allocator<(T::RealField, usize), DimMinimum<R, C>>,
{
/// Computes the singular values of this matrix.
/// The singular values are guaranteed to be sorted in descending order.
/// If this order is not required consider using `singular_values_unordered`.
#[must_use]
pub fn singular_values(&self) -> OVector<T::RealField, DimMinimum<R, C>> {
SVD::new(self.clone_owned(), false, false).singular_values
}
}
// Explicit formulae inspired from the paper "Computing the Singular Values of 2-by-2 Complex
// Matrices", Sanzheng Qiao and Xiaohong Wang.
// http://www.cas.mcmaster.ca/sqrl/papers/sqrl5.pdf
fn compute_2x2_uptrig_svd<T: RealField>(
m11: T,
m12: T,
m22: T,
compute_u: bool,
compute_v: bool,
) -> (
Option<GivensRotation<T>>,
Vector2<T>,
Option<GivensRotation<T>>,
) {
let two: T::RealField = crate::convert(2.0f64);
let half: T::RealField = crate::convert(0.5f64);
let denom = (m11.clone() + m22.clone()).hypot(m12.clone())
+ (m11.clone() - m22.clone()).hypot(m12.clone());
// NOTE: v1 is the singular value that is the closest to m22.
// This prevents cancellation issues when constructing the vector `csv` below. If we chose
// otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrophic
// cancellation on `v1 * v1 - m11 * m11` below.
let mut v1 = m11.clone() * m22.clone() * two / denom.clone();
let mut v2 = half * denom;
let mut u = None;
let mut v_t = None;
if compute_u || compute_v {
let (csv, sgn_v) = GivensRotation::new(
m11.clone() * m12.clone(),
v1.clone() * v1.clone() - m11.clone() * m11.clone(),
);
v1 *= sgn_v.clone();
v2 *= sgn_v;
if compute_v {
v_t = Some(csv.clone());
}
let cu = (m11.scale(csv.c()) + m12 * csv.s()) / v1.clone();
let su = (m22 * csv.s()) / v1.clone();
let (csu, sgn_u) = GivensRotation::new(cu, su);
v1 *= sgn_u.clone();
v2 *= sgn_u;
if compute_u {
u = Some(csu);
}
}
(u, Vector2::new(v1, v2), v_t)
}