nalgebra/src/structs/rot_macros.rs
Sébastien Crozet ca87f9eb95 Rollup of minor beaking changes.
Use associated types for the `Outer` trait.
Add a `Repeat` trait for constructing a multidimensional value by repeating an element.
Split the `Diag` trait into `Diag` and `DiagMut`.
Implement `RustEncodable` for `Identity`.
2015-05-25 14:47:14 +02:00

328 lines
7.7 KiB
Rust

#![macro_use]
macro_rules! submat_impl(
($t: ident, $submat: ident) => (
impl<N> $t<N> {
#[inline]
pub fn submat<'r>(&'r self) -> &'r $submat<N> {
&self.submat
}
}
)
);
macro_rules! rotate_impl(
($t: ident, $tv: ident, $tp: ident) => (
impl<N: BaseNum> Rotate<$tv<N>> for $t<N> {
#[inline]
fn rotate(&self, v: &$tv<N>) -> $tv<N> {
*self * *v
}
#[inline]
fn inv_rotate(&self, v: &$tv<N>) -> $tv<N> {
*v * *self
}
}
impl<N: BaseNum> Rotate<$tp<N>> for $t<N> {
#[inline]
fn rotate(&self, p: &$tp<N>) -> $tp<N> {
*self * *p
}
#[inline]
fn inv_rotate(&self, p: &$tp<N>) -> $tp<N> {
*p * *self
}
}
)
);
macro_rules! transform_impl(
($t: ident, $tv: ident, $tp: ident) => (
impl<N: BaseNum> Transform<$tv<N>> for $t<N> {
#[inline]
fn transform(&self, v: &$tv<N>) -> $tv<N> {
self.rotate(v)
}
#[inline]
fn inv_transform(&self, v: &$tv<N>) -> $tv<N> {
self.inv_rotate(v)
}
}
impl<N: BaseNum> Transform<$tp<N>> for $t<N> {
#[inline]
fn transform(&self, p: &$tp<N>) -> $tp<N> {
self.rotate(p)
}
#[inline]
fn inv_transform(&self, p: &$tp<N>) -> $tp<N> {
self.inv_rotate(p)
}
}
)
);
macro_rules! dim_impl(
($t: ident, $dim: expr) => (
impl<N> Dim for $t<N> {
#[inline]
fn dim(_: Option<$t<N>>) -> usize {
$dim
}
}
)
);
macro_rules! rotation_matrix_impl(
($t: ident, $tlv: ident, $tav: ident) => (
impl<N: Zero + BaseNum + Cast<f64> + BaseFloat> RotationMatrix<N, $tlv<N>, $tav<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn to_rot_mat(&self) -> $t<N> {
self.clone()
}
}
)
);
macro_rules! one_impl(
($t: ident) => (
impl<N: BaseNum> One for $t<N> {
#[inline]
fn one() -> $t<N> {
$t { submat: ::one() }
}
}
)
);
macro_rules! eye_impl(
($t: ident) => (
impl<N: BaseNum> Eye for $t<N> {
#[inline]
fn new_identity(dim: usize) -> $t<N> {
if dim != ::dim::<$t<N>>() {
panic!("Dimension mismatch: should be {}, got {}.", ::dim::<$t<N>>(), dim);
}
else {
::one()
}
}
}
)
);
macro_rules! diag_impl(
($t: ident, $tv: ident) => (
impl<N: Copy + Zero> Diag<$tv<N>> for $t<N> {
#[inline]
fn from_diag(diag: &$tv<N>) -> $t<N> {
$t { submat: Diag::from_diag(diag) }
}
#[inline]
fn diag(&self) -> $tv<N> {
self.submat.diag()
}
}
)
);
macro_rules! rot_mul_rot_impl(
($t: ident) => (
impl<N: BaseNum> Mul<$t<N>> for $t<N> {
type Output = $t<N>;
#[inline]
fn mul(self, right: $t<N>) -> $t<N> {
$t { submat: self.submat * right.submat }
}
}
)
);
macro_rules! rot_mul_vec_impl(
($t: ident, $tv: ident) => (
impl<N: BaseNum> Mul<$tv<N>> for $t<N> {
type Output = $tv<N>;
#[inline]
fn mul(self, right: $tv<N>) -> $tv<N> {
self.submat * right
}
}
)
);
macro_rules! rot_mul_pnt_impl(
($t: ident, $tv: ident) => (
rot_mul_vec_impl!($t, $tv);
)
);
macro_rules! vec_mul_rot_impl(
($t: ident, $tv: ident) => (
impl<N: BaseNum> Mul<$t<N>> for $tv<N> {
type Output = $tv<N>;
#[inline]
fn mul(self, right: $t<N>) -> $tv<N> {
self * right.submat
}
}
)
);
macro_rules! pnt_mul_rot_impl(
($t: ident, $tv: ident) => (
vec_mul_rot_impl!($t, $tv);
)
);
macro_rules! inv_impl(
($t: ident) => (
impl<N: Copy> Inv for $t<N> {
#[inline]
fn inv_mut(&mut self) -> bool {
self.transpose_mut();
// always succeed
true
}
#[inline]
fn inv(&self) -> Option<$t<N>> {
// always succeed
Some(self.transpose())
}
}
)
);
macro_rules! transpose_impl(
($t: ident) => (
impl<N: Copy> Transpose for $t<N> {
#[inline]
fn transpose(&self) -> $t<N> {
$t { submat: Transpose::transpose(&self.submat) }
}
#[inline]
fn transpose_mut(&mut self) {
self.submat.transpose_mut()
}
}
)
);
macro_rules! row_impl(
($t: ident, $tv: ident) => (
impl<N: Copy + Zero> Row<$tv<N>> for $t<N> {
#[inline]
fn nrows(&self) -> usize {
self.submat.nrows()
}
#[inline]
fn row(&self, i: usize) -> $tv<N> {
self.submat.row(i)
}
#[inline]
fn set_row(&mut self, i: usize, row: $tv<N>) {
self.submat.set_row(i, row);
}
}
)
);
macro_rules! col_impl(
($t: ident, $tv: ident) => (
impl<N: Copy + Zero> Col<$tv<N>> for $t<N> {
#[inline]
fn ncols(&self) -> usize {
self.submat.ncols()
}
#[inline]
fn col(&self, i: usize) -> $tv<N> {
self.submat.col(i)
}
#[inline]
fn set_col(&mut self, i: usize, col: $tv<N>) {
self.submat.set_col(i, col);
}
}
)
);
macro_rules! index_impl(
($t: ident) => (
impl<N> Index<(usize, usize)> for $t<N> {
type Output = N;
fn index(&self, i: (usize, usize)) -> &N {
&self.submat[i]
}
}
)
);
macro_rules! to_homogeneous_impl(
($t: ident, $tm: ident) => (
impl<N: BaseNum> ToHomogeneous<$tm<N>> for $t<N> {
#[inline]
fn to_homogeneous(&self) -> $tm<N> {
self.submat.to_homogeneous()
}
}
)
);
macro_rules! approx_eq_impl(
($t: ident) => (
impl<N: ApproxEq<N>> ApproxEq<N> for $t<N> {
#[inline]
fn approx_epsilon(_: Option<$t<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_ulps(_: Option<$t<N>>) -> u32 {
ApproxEq::approx_ulps(None::<N>)
}
#[inline]
fn approx_eq(&self, other: &$t<N>) -> bool {
ApproxEq::approx_eq(&self.submat, &other.submat)
}
#[inline]
fn approx_eq_eps(&self, other: &$t<N>, epsilon: &N) -> bool {
ApproxEq::approx_eq_eps(&self.submat, &other.submat, epsilon)
}
#[inline]
fn approx_eq_ulps(&self, other: &$t<N>, ulps: u32) -> bool {
ApproxEq::approx_eq_ulps(&self.submat, &other.submat, ulps)
}
}
)
);
macro_rules! absolute_impl(
($t: ident, $tm: ident) => (
impl<N: Absolute<N>> Absolute<$tm<N>> for $t<N> {
#[inline]
fn abs(m: &$t<N>) -> $tm<N> {
Absolute::abs(&m.submat)
}
}
)
);