ba18f5aa70
This also moves the tests and benches to cargo-complient folders. Fix #21.
352 lines
7.4 KiB
Rust
352 lines
7.4 KiB
Rust
#![feature(macro_rules)]
|
|
|
|
extern crate debug;
|
|
extern crate "nalgebra" as na;
|
|
|
|
use std::num::{Float, abs};
|
|
use std::rand::random;
|
|
use std::cmp::{min, max};
|
|
use na::{Vec1, Vec3, Mat1, Mat2, Mat3, Mat4, Mat5, Mat6, Rot3, DMat, DVec, Indexable, Row, Col};
|
|
|
|
macro_rules! test_inv_mat_impl(
|
|
($t: ty) => (
|
|
for _ in range(0u, 10000) {
|
|
let randmat : $t = random();
|
|
|
|
match na::inv(&randmat) {
|
|
None => { },
|
|
Some(i) => assert!(na::approx_eq(&(i * randmat), &na::one()))
|
|
}
|
|
}
|
|
);
|
|
)
|
|
|
|
macro_rules! test_transpose_mat_impl(
|
|
($t: ty) => (
|
|
for _ in range(0u, 10000) {
|
|
let randmat : $t = random();
|
|
|
|
assert!(na::transpose(&na::transpose(&randmat)) == randmat);
|
|
}
|
|
);
|
|
)
|
|
|
|
macro_rules! test_qr_impl(
|
|
($t: ty) => (
|
|
for _ in range(0u, 10000) {
|
|
let randmat : $t = random();
|
|
|
|
let (q, r) = na::qr(&randmat);
|
|
let recomp = q * r;
|
|
|
|
assert!(na::approx_eq(&randmat, &recomp));
|
|
}
|
|
);
|
|
)
|
|
|
|
// NOTE: deactivated untile we get a better convergence rate.
|
|
// macro_rules! test_eigen_qr_impl(
|
|
// ($t: ty) => {
|
|
// for _ in range(0u, 10000) {
|
|
// let randmat : $t = random();
|
|
// // Make it symetric so that we can recompose the matrix to test at the end.
|
|
// let randmat = na::transpose(&randmat) * randmat;
|
|
//
|
|
// let (eigenvectors, eigenvalues) = na::eigen_qr(&randmat, &Float::epsilon(), 100);
|
|
//
|
|
// let diag: $t = Diag::from_diag(&eigenvalues);
|
|
//
|
|
// let recomp = eigenvectors * diag * na::transpose(&eigenvectors);
|
|
//
|
|
// println!("eigenvalues: {}", eigenvalues);
|
|
// println!(" mat: {}", randmat);
|
|
// println!("recomp: {}", recomp);
|
|
//
|
|
// assert!(na::approx_eq_eps(&randmat, &recomp, &1.0e-2));
|
|
// }
|
|
// }
|
|
// )
|
|
|
|
#[test]
|
|
fn test_transpose_mat1() {
|
|
test_transpose_mat_impl!(Mat1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat2() {
|
|
test_transpose_mat_impl!(Mat2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat3() {
|
|
test_transpose_mat_impl!(Mat3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat4() {
|
|
test_transpose_mat_impl!(Mat4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat5() {
|
|
test_transpose_mat_impl!(Mat5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_mat6() {
|
|
test_transpose_mat_impl!(Mat6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat1() {
|
|
test_inv_mat_impl!(Mat1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat2() {
|
|
test_inv_mat_impl!(Mat2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat3() {
|
|
test_inv_mat_impl!(Mat3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat4() {
|
|
test_inv_mat_impl!(Mat4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat5() {
|
|
test_inv_mat_impl!(Mat5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_mat6() {
|
|
test_inv_mat_impl!(Mat6<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rotation2() {
|
|
for _ in range(0u, 10000) {
|
|
let randmat: na::Rot2<f64> = na::one();
|
|
let ang = Vec1::new(abs::<f64>(random()) % Float::pi());
|
|
|
|
assert!(na::approx_eq(&na::rotation(&na::append_rotation(&randmat, &ang)), &ang));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_index_mat2() {
|
|
let mat: Mat2<f64> = random();
|
|
|
|
assert!(mat.at((0, 1)) == na::transpose(&mat).at((1, 0)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_inv_rotation3() {
|
|
for _ in range(0u, 10000) {
|
|
let randmat: Rot3<f64> = na::one();
|
|
let dir: Vec3<f64> = random();
|
|
let ang = na::normalize(&dir) * (abs::<f64>(random()) % Float::pi());
|
|
let rot = na::append_rotation(&randmat, &ang);
|
|
|
|
assert!(na::approx_eq(&(na::transpose(&rot) * rot), &na::one()));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_mean_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
[
|
|
1.0f64, 2.0, 3.0,
|
|
4.0f64, 5.0, 6.0,
|
|
7.0f64, 8.0, 9.0,
|
|
]
|
|
);
|
|
|
|
assert!(na::approx_eq(&na::mean(&mat), &DVec::from_slice(3, [4.0f64, 5.0, 6.0])));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cov_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
5,
|
|
3,
|
|
[
|
|
4.0f64, 2.0, 0.60,
|
|
4.2f64, 2.1, 0.59,
|
|
3.9f64, 2.0, 0.58,
|
|
4.3f64, 2.1, 0.62,
|
|
4.1f64, 2.2, 0.63
|
|
]
|
|
);
|
|
|
|
let expected = DMat::from_row_vec(
|
|
3,
|
|
3,
|
|
[
|
|
0.025f64, 0.0075, 0.00175,
|
|
0.0075f64, 0.007, 0.00135,
|
|
0.00175f64, 0.00135, 0.00043
|
|
]
|
|
);
|
|
|
|
assert!(na::approx_eq(&na::cov(&mat), &expected));
|
|
}
|
|
|
|
#[test]
|
|
fn test_transpose_dmat() {
|
|
let mat = DMat::from_row_vec(
|
|
8,
|
|
4,
|
|
[
|
|
1u32,2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 16,
|
|
17, 18, 19, 20,
|
|
21, 22, 23, 24,
|
|
25, 26, 27, 28,
|
|
29, 30, 31, 32
|
|
]
|
|
);
|
|
|
|
assert!(na::transpose(&na::transpose(&mat)) == mat);
|
|
}
|
|
|
|
#[test]
|
|
fn test_dmat_from_vec() {
|
|
let mat1 = DMat::from_row_vec(
|
|
8,
|
|
4,
|
|
[
|
|
1i32, 2, 3, 4,
|
|
5, 6, 7, 8,
|
|
9, 10, 11, 12,
|
|
13, 14, 15, 16,
|
|
17, 18, 19, 20,
|
|
21, 22, 23, 24,
|
|
25, 26, 27, 28,
|
|
29, 30, 31, 32
|
|
]
|
|
);
|
|
|
|
let mat2 = DMat::from_col_vec(
|
|
8,
|
|
4,
|
|
[
|
|
1i32, 5, 9, 13, 17, 21, 25, 29,
|
|
2i32, 6, 10, 14, 18, 22, 26, 30,
|
|
3i32, 7, 11, 15, 19, 23, 27, 31,
|
|
4i32, 8, 12, 16, 20, 24, 28, 32
|
|
]
|
|
);
|
|
|
|
println!("mat1: {:?}, mat2: {:?}", mat1, mat2);
|
|
|
|
assert!(mat1 == mat2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr() {
|
|
for _ in range(0u, 10) {
|
|
let dim1: uint = random();
|
|
let dim2: uint = random();
|
|
let rows = min(40, max(dim1, dim2));
|
|
let cols = min(40, min(dim1, dim2));
|
|
let randmat: DMat<f64> = DMat::new_random(rows, cols);
|
|
let (q, r) = na::qr(&randmat);
|
|
let recomp = q * r;
|
|
|
|
assert!(na::approx_eq(&randmat, &recomp));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat1() {
|
|
test_qr_impl!(Mat1<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat2() {
|
|
test_qr_impl!(Mat2<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat3() {
|
|
test_qr_impl!(Mat3<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat4() {
|
|
test_qr_impl!(Mat4<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat5() {
|
|
test_qr_impl!(Mat5<f64>);
|
|
}
|
|
|
|
#[test]
|
|
fn test_qr_mat6() {
|
|
test_qr_impl!(Mat6<f64>);
|
|
}
|
|
|
|
// NOTE: deactivated untile we get a better convergence rate.
|
|
// #[test]
|
|
// fn test_eigen_qr_mat1() {
|
|
// test_eigen_qr_impl!(Mat1<f64>);
|
|
// }
|
|
//
|
|
// #[test]
|
|
// fn test_eigen_qr_mat2() {
|
|
// test_eigen_qr_impl!(Mat2<f64>);
|
|
// }
|
|
//
|
|
// #[test]
|
|
// fn test_eigen_qr_mat3() {
|
|
// test_eigen_qr_impl!(Mat3<f64>);
|
|
// }
|
|
//
|
|
// #[test]
|
|
// fn test_eigen_qr_mat4() {
|
|
// test_eigen_qr_impl!(Mat4<f64>);
|
|
// }
|
|
//
|
|
// #[test]
|
|
// fn test_eigen_qr_mat5() {
|
|
// test_eigen_qr_impl!(Mat5<f64>);
|
|
// }
|
|
//
|
|
// #[test]
|
|
// fn test_eigen_qr_mat6() {
|
|
// test_eigen_qr_impl!(Mat6<f64>);
|
|
// }
|
|
|
|
#[test]
|
|
fn test_from_fn() {
|
|
let actual: DMat<uint> = DMat::from_fn(3, 4, |i, j| 10 * i + j);
|
|
let expected: DMat<uint> = DMat::from_row_vec(3, 4,
|
|
[0_0, 0_1, 0_2, 0_3,
|
|
1_0, 1_1, 1_2, 1_3,
|
|
2_0, 2_1, 2_2, 2_3 ]);
|
|
|
|
assert_eq!(actual, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn test_row_3() {
|
|
let mat = Mat3::new(0.0f32, 1.0, 2.0,
|
|
3.0, 4.0, 5.0,
|
|
6.0, 7.0, 8.0);
|
|
let second_row = mat.row(1);
|
|
let second_col = mat.col(1);
|
|
|
|
assert!(second_row == Vec3::new(3.0, 4.0, 5.0));
|
|
assert!(second_col == Vec3::new(1.0, 4.0, 7.0));
|
|
}
|