nalgebra/src/linalg/bidiagonal.rs
2017-08-15 19:07:18 +02:00

282 lines
12 KiB
Rust

use alga::general::Real;
use core::{Unit, Matrix, MatrixN, MatrixMN, VectorN, DefaultAllocator};
use dimension::{Dim, DimMin, DimMinimum, DimSub, DimDiff, Dynamic, U1};
use storage::Storage;
use allocator::Allocator;
use constraint::{ShapeConstraint, DimEq};
use linalg::householder;
use geometry::Reflection;
/// The bidiagonalization of a general matrix.
#[derive(Clone, Debug)]
pub struct Bidiagonal<N: Real, R: DimMin<C>, C: Dim>
where DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>> +
Allocator<N, DimDiff<DimMinimum<R, C>, U1>> {
// FIXME: perhaps we should pack the axises into different vectors so that axises for `v_t` are
// contiguous. This prevents some useless copies.
uv: MatrixMN<N, R, C>,
/// The diagonal elements of the decomposed matrix.
pub diagonal: VectorN<N, DimMinimum<R, C>>,
/// The off-diagonal elements of the decomposed matrix.
pub off_diagonal: VectorN<N, DimDiff<DimMinimum<R, C>, U1>>,
upper_diagonal: bool
}
impl<N: Real, R: DimMin<C>, C: Dim> Copy for Bidiagonal<N, R, C>
where DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>> +
Allocator<N, DimDiff<DimMinimum<R, C>, U1>>,
MatrixMN<N, R, C>: Copy,
VectorN<N, DimMinimum<R, C>>: Copy,
VectorN<N, DimDiff<DimMinimum<R, C>, U1>>: Copy { }
impl<N: Real, R: DimMin<C>, C: Dim> Bidiagonal<N, R, C>
where DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> +
Allocator<N, C> +
Allocator<N, R> +
Allocator<N, DimMinimum<R, C>> +
Allocator<N, DimDiff<DimMinimum<R, C>, U1>> {
/// Computes the Bidiagonal decomposition using householder reflections.
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
let (nrows, ncols) = matrix.data.shape();
let min_nrows_ncols = nrows.min(ncols);
let dim = min_nrows_ncols.value();
assert!(dim != 0, "Cannot compute the bidiagonalization of an empty matrix.");
let mut diagonal = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) };
let mut off_diagonal = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols.sub(U1), U1) };
let mut axis_packed = unsafe { MatrixMN::new_uninitialized_generic(ncols, U1) };
let mut work = unsafe { MatrixMN::new_uninitialized_generic(nrows, U1) };
let upper_diagonal = nrows.value() >= ncols.value();
if upper_diagonal {
for ite in 0 .. dim - 1 {
householder::clear_column_unchecked(&mut matrix, &mut diagonal[ite], ite, 0, None);
householder::clear_row_unchecked(&mut matrix, &mut off_diagonal[ite], &mut axis_packed, &mut work, ite, 1);
}
householder::clear_column_unchecked(&mut matrix, &mut diagonal[dim - 1], dim - 1, 0, None);
}
else {
for ite in 0 .. dim - 1 {
householder::clear_row_unchecked(&mut matrix, &mut diagonal[ite], &mut axis_packed, &mut work, ite, 0);
householder::clear_column_unchecked(&mut matrix, &mut off_diagonal[ite], ite, 1, None);
}
householder::clear_row_unchecked(&mut matrix, &mut diagonal[dim - 1], &mut axis_packed, &mut work, dim - 1, 0);
}
Bidiagonal { uv: matrix, diagonal: diagonal, off_diagonal: off_diagonal, upper_diagonal: upper_diagonal }
}
/// Indicates whether this decomposition contains an upper-diagonal matrix.
#[inline]
pub fn is_upper_diagonal(&self) -> bool {
self.upper_diagonal
}
#[inline]
fn axis_shift(&self) -> (usize, usize) {
if self.upper_diagonal {
(0, 1)
}
else {
(1, 0)
}
}
/// Unpacks thi decomposition into its thrme matrix factors `(U, D, V^t)`.
///
/// The decomposed matrix `M` is equal to `U * D * V^t`.
#[inline]
pub fn unpack(self) -> (MatrixMN<N, R, DimMinimum<R, C>>,
MatrixN<N, DimMinimum<R, C>>,
MatrixMN<N, DimMinimum<R, C>, C>)
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>> +
Allocator<N, R, DimMinimum<R, C>> +
Allocator<N, DimMinimum<R, C>, C>,
// FIXME: the following bounds are ugly.
DimMinimum<R, C>: DimMin<DimMinimum<R, C>, Output = DimMinimum<R, C>>,
ShapeConstraint: DimEq<Dynamic, DimDiff<DimMinimum<R, C>, U1>> {
// FIXME: optimize by calling a reallocator.
(self.u(), self.d(), self.v_t())
}
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
#[inline]
pub fn d(&self) -> MatrixN<N, DimMinimum<R, C>>
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, DimMinimum<R, C>>,
// FIXME: the following bounds are ugly.
DimMinimum<R, C>: DimMin<DimMinimum<R, C>, Output = DimMinimum<R, C>>,
ShapeConstraint: DimEq<Dynamic, DimDiff<DimMinimum<R, C>, U1>> {
let (nrows, ncols) = self.uv.data.shape();
let d = nrows.min(ncols);
let mut res = MatrixN::identity_generic(d, d);
res.set_diagonal(&self.diagonal);
let start = self.axis_shift();
res.slice_mut(start, (d.value() - 1, d.value() - 1)).set_diagonal(&self.off_diagonal);
res
}
/// Computes the orthogonal matrix `U` of this `U * D * V` decomposition.
// FIXME: code duplication with householder::assemble_q.
// Except that we are returning a rectangular matrix here.
pub fn u(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.uv.data.shape();
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
let dim = self.diagonal.len();
let shift = self.axis_shift().0;
for i in (0 .. dim - shift).rev() {
let axis = self.uv.slice_range(i + shift .., i);
// FIXME: sometimes, the axis might have a zero magnitude.
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
let mut res_rows = res.slice_range_mut(i + shift .., i ..);
refl.reflect(&mut res_rows);
}
res
}
/// Computes the orthogonal matrix `V` of this `U * D * V` decomposition.
pub fn v_t(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
let (nrows, ncols) = self.uv.data.shape();
let min_nrows_ncols = nrows.min(ncols);
let mut res = Matrix::identity_generic(min_nrows_ncols, ncols);
let mut work = unsafe { MatrixMN::new_uninitialized_generic(min_nrows_ncols, U1) };
let mut axis_packed = unsafe { MatrixMN::new_uninitialized_generic(ncols, U1) };
let shift = self.axis_shift().1;
for i in (0 .. min_nrows_ncols.value() - shift).rev() {
let axis = self.uv.slice_range(i, i + shift ..);
let mut axis_packed = axis_packed.rows_range_mut(i + shift ..);
axis_packed.tr_copy_from(&axis);
// FIXME: sometimes, the axis might have a zero magnitude.
let refl = Reflection::new(Unit::new_unchecked(axis_packed), N::zero());
let mut res_rows = res.slice_range_mut(i .., i + shift ..);
refl.reflect_rows(&mut res_rows, &mut work.rows_range_mut(i ..));
}
res
}
/// The diagonal part of this decomposed matrix.
pub fn diagonal(&self) -> &VectorN<N, DimMinimum<R, C>> {
&self.diagonal
}
/// The off-diagonal part of this decomposed matrix.
pub fn off_diagonal(&self) -> &VectorN<N, DimDiff<DimMinimum<R, C>, U1>> {
&self.off_diagonal
}
#[doc(hidden)]
pub fn uv_internal(&self) -> &MatrixMN<N, R, C> {
&self.uv
}
}
// impl<N: Real, D: DimMin<D, Output = D> + DimSub<Dynamic>> Bidiagonal<N, D, D>
// where DefaultAllocator: Allocator<N, D, D> +
// Allocator<N, D> {
// /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
// pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> MatrixMN<N, R2, C2>
// where S2: StorageMut<N, R2, C2>,
// ShapeConstraint: SameNumberOfRows<R2, D>,
// DefaultAllocator: Allocator<N, R2, C2> {
// let mut res = b.clone_owned();
// self.solve_mut(&mut res);
// res
// }
//
// /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
// pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
// where S2: StorageMut<N, R2, C2>,
// ShapeConstraint: SameNumberOfRows<R2, D> {
//
// assert_eq!(self.uv.nrows(), b.nrows(), "Bidiagonal solve matrix dimension mismatch.");
// assert!(self.uv.is_square(), "Bidiagonal solve: unable to solve a non-square system.");
//
// self.q_tr_mul(b);
// self.solve_upper_triangular_mut(b);
// }
//
// // FIXME: duplicate code from the `solve` module.
// fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>)
// where S2: StorageMut<N, R2, C2>,
// ShapeConstraint: SameNumberOfRows<R2, D> {
//
// let dim = self.uv.nrows();
//
// for k in 0 .. b.ncols() {
// let mut b = b.column_mut(k);
// for i in (0 .. dim).rev() {
// let coeff;
//
// unsafe {
// let diag = *self.diag.vget_unchecked(i);
// coeff = *b.vget_unchecked(i) / diag;
// *b.vget_unchecked_mut(i) = coeff;
// }
//
// b.rows_range_mut(.. i).axpy(-coeff, &self.uv.slice_range(.. i, i), N::one());
// }
// }
// }
//
// /// Computes the inverse of the decomposed matrix.
// pub fn inverse(&self) -> MatrixN<N, D> {
// assert!(self.uv.is_square(), "Bidiagonal inverse: unable to compute the inverse of a non-square matrix.");
//
// // FIXME: is there a less naive method ?
// let (nrows, ncols) = self.uv.data.shape();
// let mut res = MatrixN::identity_generic(nrows, ncols);
// self.solve_mut(&mut res);
// res
// }
//
// // /// Computes the determinant of the decomposed matrix.
// // pub fn determinant(&self) -> N {
// // let dim = self.uv.nrows();
// // assert!(self.uv.is_square(), "Bidiagonal determinant: unable to compute the determinant of a non-square matrix.");
//
// // let mut res = N::one();
// // for i in 0 .. dim {
// // res *= unsafe { *self.diag.vget_unchecked(i) };
// // }
//
// // res self.q_determinant()
// // }
// }
impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
where DimMinimum<R, C>: DimSub<U1>,
DefaultAllocator: Allocator<N, R, C> +
Allocator<N, C> +
Allocator<N, R> +
Allocator<N, DimMinimum<R, C>> +
Allocator<N, DimDiff<DimMinimum<R, C>, U1>> {
/// Computes the bidiagonalization using householder reflections.
pub fn bidiagonalize(self) -> Bidiagonal<N, R, C> {
Bidiagonal::new(self.into_owned())
}
}