698e130c3b
Abomonation has numerous soundness problems which have been well-documented in its issue tracker for over 2 years. Some of them could be fixed, but some are fundamental to its design. If a user wants super-fast ser/de, they should use rkyv.
406 lines
13 KiB
Rust
Executable File
406 lines
13 KiB
Rust
Executable File
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
|
||
use num::Zero;
|
||
use std::fmt;
|
||
use std::hash;
|
||
|
||
#[cfg(feature = "serde-serialize-no-std")]
|
||
use serde::{Deserialize, Serialize};
|
||
|
||
use simba::scalar::{RealField, SubsetOf};
|
||
use simba::simd::SimdRealField;
|
||
|
||
use crate::base::allocator::Allocator;
|
||
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
|
||
use crate::base::storage::Owned;
|
||
use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar};
|
||
use crate::geometry::{AbstractRotation, Isometry, Point, Translation};
|
||
|
||
/// A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.
|
||
#[repr(C)]
|
||
#[derive(Debug, Copy, Clone)]
|
||
#[cfg_attr(
|
||
all(not(target_os = "cuda"), feature = "cuda"),
|
||
derive(cust::DeviceCopy)
|
||
)]
|
||
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize-no-std",
|
||
serde(bound(serialize = "T: Scalar + Serialize,
|
||
R: Serialize,
|
||
DefaultAllocator: Allocator<T, Const<D>>,
|
||
Owned<T, Const<D>>: Serialize"))
|
||
)]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize-no-std",
|
||
serde(bound(deserialize = "T: Scalar + Deserialize<'de>,
|
||
R: Deserialize<'de>,
|
||
DefaultAllocator: Allocator<T, Const<D>>,
|
||
Owned<T, Const<D>>: Deserialize<'de>"))
|
||
)]
|
||
pub struct Similarity<T, R, const D: usize> {
|
||
/// The part of this similarity that does not include the scaling factor.
|
||
pub isometry: Isometry<T, R, D>,
|
||
scaling: T,
|
||
}
|
||
|
||
impl<T: Scalar + hash::Hash, R: hash::Hash, const D: usize> hash::Hash for Similarity<T, R, D>
|
||
where
|
||
Owned<T, Const<D>>: hash::Hash,
|
||
{
|
||
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
||
self.isometry.hash(state);
|
||
self.scaling.hash(state);
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar + Zero, R, const D: usize> Similarity<T, R, D>
|
||
where
|
||
R: AbstractRotation<T, D>,
|
||
{
|
||
/// Creates a new similarity from its rotational and translational parts.
|
||
#[inline]
|
||
pub fn from_parts(translation: Translation<T, D>, rotation: R, scaling: T) -> Self {
|
||
Self::from_isometry(Isometry::from_parts(translation, rotation), scaling)
|
||
}
|
||
|
||
/// Creates a new similarity from its rotational and translational parts.
|
||
#[inline]
|
||
pub fn from_isometry(isometry: Isometry<T, R, D>, scaling: T) -> Self {
|
||
assert!(!scaling.is_zero(), "The scaling factor must not be zero.");
|
||
|
||
Self { isometry, scaling }
|
||
}
|
||
|
||
/// The scaling factor of this similarity transformation.
|
||
#[inline]
|
||
pub fn set_scaling(&mut self, scaling: T) {
|
||
assert!(
|
||
!scaling.is_zero(),
|
||
"The similarity scaling factor must not be zero."
|
||
);
|
||
|
||
self.scaling = scaling;
|
||
}
|
||
}
|
||
|
||
impl<T: Scalar, R, const D: usize> Similarity<T, R, D> {
|
||
/// The scaling factor of this similarity transformation.
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn scaling(&self) -> T {
|
||
self.scaling.clone()
|
||
}
|
||
}
|
||
|
||
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
|
||
where
|
||
T::Element: SimdRealField,
|
||
R: AbstractRotation<T, D>,
|
||
{
|
||
/// Creates a new similarity that applies only a scaling factor.
|
||
#[inline]
|
||
pub fn from_scaling(scaling: T) -> Self {
|
||
Self::from_isometry(Isometry::identity(), scaling)
|
||
}
|
||
|
||
/// Inverts `self`.
|
||
#[inline]
|
||
#[must_use = "Did you mean to use inverse_mut()?"]
|
||
pub fn inverse(&self) -> Self {
|
||
let mut res = self.clone();
|
||
res.inverse_mut();
|
||
res
|
||
}
|
||
|
||
/// Inverts `self` in-place.
|
||
#[inline]
|
||
pub fn inverse_mut(&mut self) {
|
||
self.scaling = T::one() / self.scaling.clone();
|
||
self.isometry.inverse_mut();
|
||
self.isometry.translation.vector *= self.scaling.clone();
|
||
}
|
||
|
||
/// The similarity transformation that applies a scaling factor `scaling` before `self`.
|
||
#[inline]
|
||
#[must_use = "Did you mean to use prepend_scaling_mut()?"]
|
||
pub fn prepend_scaling(&self, scaling: T) -> Self {
|
||
assert!(
|
||
!scaling.is_zero(),
|
||
"The similarity scaling factor must not be zero."
|
||
);
|
||
|
||
Self::from_isometry(self.isometry.clone(), self.scaling.clone() * scaling)
|
||
}
|
||
|
||
/// The similarity transformation that applies a scaling factor `scaling` after `self`.
|
||
#[inline]
|
||
#[must_use = "Did you mean to use append_scaling_mut()?"]
|
||
pub fn append_scaling(&self, scaling: T) -> Self {
|
||
assert!(
|
||
!scaling.is_zero(),
|
||
"The similarity scaling factor must not be zero."
|
||
);
|
||
|
||
Self::from_parts(
|
||
Translation::from(&self.isometry.translation.vector * scaling.clone()),
|
||
self.isometry.rotation.clone(),
|
||
self.scaling.clone() * scaling,
|
||
)
|
||
}
|
||
|
||
/// Sets `self` to the similarity transformation that applies a scaling factor `scaling` before `self`.
|
||
#[inline]
|
||
pub fn prepend_scaling_mut(&mut self, scaling: T) {
|
||
assert!(
|
||
!scaling.is_zero(),
|
||
"The similarity scaling factor must not be zero."
|
||
);
|
||
|
||
self.scaling *= scaling
|
||
}
|
||
|
||
/// Sets `self` to the similarity transformation that applies a scaling factor `scaling` after `self`.
|
||
#[inline]
|
||
pub fn append_scaling_mut(&mut self, scaling: T) {
|
||
assert!(
|
||
!scaling.is_zero(),
|
||
"The similarity scaling factor must not be zero."
|
||
);
|
||
|
||
self.isometry.translation.vector *= scaling.clone();
|
||
self.scaling *= scaling;
|
||
}
|
||
|
||
/// Appends to `self` the given translation in-place.
|
||
#[inline]
|
||
pub fn append_translation_mut(&mut self, t: &Translation<T, D>) {
|
||
self.isometry.append_translation_mut(t)
|
||
}
|
||
|
||
/// Appends to `self` the given rotation in-place.
|
||
#[inline]
|
||
pub fn append_rotation_mut(&mut self, r: &R) {
|
||
self.isometry.append_rotation_mut(r)
|
||
}
|
||
|
||
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
|
||
/// lets `p` invariant.
|
||
#[inline]
|
||
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>) {
|
||
self.isometry.append_rotation_wrt_point_mut(r, p)
|
||
}
|
||
|
||
/// Appends in-place to `self` a rotation centered at the point with coordinates
|
||
/// `self.translation`.
|
||
#[inline]
|
||
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
|
||
self.isometry.append_rotation_wrt_center_mut(r)
|
||
}
|
||
|
||
/// Transform the given point by this similarity.
|
||
///
|
||
/// This is the same as the multiplication `self * pt`.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Point3, Similarity3, Vector3};
|
||
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
|
||
/// let translation = Vector3::new(1.0, 2.0, 3.0);
|
||
/// let sim = Similarity3::new(translation, axisangle, 3.0);
|
||
/// let transformed_point = sim.transform_point(&Point3::new(4.0, 5.0, 6.0));
|
||
/// assert_relative_eq!(transformed_point, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
|
||
self * pt
|
||
}
|
||
|
||
/// Transform the given vector by this similarity, ignoring the translational
|
||
/// component.
|
||
///
|
||
/// This is the same as the multiplication `self * t`.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Similarity3, Vector3};
|
||
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
|
||
/// let translation = Vector3::new(1.0, 2.0, 3.0);
|
||
/// let sim = Similarity3::new(translation, axisangle, 3.0);
|
||
/// let transformed_vector = sim.transform_vector(&Vector3::new(4.0, 5.0, 6.0));
|
||
/// assert_relative_eq!(transformed_vector, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
|
||
self * v
|
||
}
|
||
|
||
/// Transform the given point by the inverse of this similarity. This may
|
||
/// be cheaper than inverting the similarity and then transforming the
|
||
/// given point.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Point3, Similarity3, Vector3};
|
||
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
|
||
/// let translation = Vector3::new(1.0, 2.0, 3.0);
|
||
/// let sim = Similarity3::new(translation, axisangle, 2.0);
|
||
/// let transformed_point = sim.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0));
|
||
/// assert_relative_eq!(transformed_point, Point3::new(-1.5, 1.5, 1.5), epsilon = 1.0e-5);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
|
||
self.isometry.inverse_transform_point(pt) / self.scaling()
|
||
}
|
||
|
||
/// Transform the given vector by the inverse of this similarity,
|
||
/// ignoring the translational component. This may be cheaper than
|
||
/// inverting the similarity and then transforming the given vector.
|
||
///
|
||
/// # Example
|
||
/// ```
|
||
/// # #[macro_use] extern crate approx;
|
||
/// # use std::f32;
|
||
/// # use nalgebra::{Similarity3, Vector3};
|
||
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
|
||
/// let translation = Vector3::new(1.0, 2.0, 3.0);
|
||
/// let sim = Similarity3::new(translation, axisangle, 2.0);
|
||
/// let transformed_vector = sim.inverse_transform_vector(&Vector3::new(4.0, 5.0, 6.0));
|
||
/// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.5, 2.0), epsilon = 1.0e-5);
|
||
/// ```
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
|
||
self.isometry.inverse_transform_vector(v) / self.scaling()
|
||
}
|
||
}
|
||
|
||
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
|
||
// and makes it harder to use it, e.g., for Transform × Isometry implementation.
|
||
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
|
||
// explicit struct construction is prevented by the private scaling factor).
|
||
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D> {
|
||
/// Converts this similarity into its equivalent homogeneous transformation matrix.
|
||
#[inline]
|
||
#[must_use]
|
||
pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
|
||
where
|
||
Const<D>: DimNameAdd<U1>,
|
||
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
|
||
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
||
{
|
||
let mut res = self.isometry.to_homogeneous();
|
||
|
||
for e in res.fixed_slice_mut::<D, D>(0, 0).iter_mut() {
|
||
*e *= self.scaling.clone()
|
||
}
|
||
|
||
res
|
||
}
|
||
}
|
||
|
||
impl<T: SimdRealField, R, const D: usize> Eq for Similarity<T, R, D> where
|
||
R: AbstractRotation<T, D> + Eq
|
||
{
|
||
}
|
||
|
||
impl<T: SimdRealField, R, const D: usize> PartialEq for Similarity<T, R, D>
|
||
where
|
||
R: AbstractRotation<T, D> + PartialEq,
|
||
{
|
||
#[inline]
|
||
fn eq(&self, right: &Self) -> bool {
|
||
self.isometry == right.isometry && self.scaling == right.scaling
|
||
}
|
||
}
|
||
|
||
impl<T: RealField, R, const D: usize> AbsDiffEq for Similarity<T, R, D>
|
||
where
|
||
R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
|
||
T::Epsilon: Clone,
|
||
{
|
||
type Epsilon = T::Epsilon;
|
||
|
||
#[inline]
|
||
fn default_epsilon() -> Self::Epsilon {
|
||
T::default_epsilon()
|
||
}
|
||
|
||
#[inline]
|
||
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
|
||
self.isometry.abs_diff_eq(&other.isometry, epsilon.clone())
|
||
&& self.scaling.abs_diff_eq(&other.scaling, epsilon)
|
||
}
|
||
}
|
||
|
||
impl<T: RealField, R, const D: usize> RelativeEq for Similarity<T, R, D>
|
||
where
|
||
R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
|
||
T::Epsilon: Clone,
|
||
{
|
||
#[inline]
|
||
fn default_max_relative() -> Self::Epsilon {
|
||
T::default_max_relative()
|
||
}
|
||
|
||
#[inline]
|
||
fn relative_eq(
|
||
&self,
|
||
other: &Self,
|
||
epsilon: Self::Epsilon,
|
||
max_relative: Self::Epsilon,
|
||
) -> bool {
|
||
self.isometry
|
||
.relative_eq(&other.isometry, epsilon.clone(), max_relative.clone())
|
||
&& self
|
||
.scaling
|
||
.relative_eq(&other.scaling, epsilon, max_relative)
|
||
}
|
||
}
|
||
|
||
impl<T: RealField, R, const D: usize> UlpsEq for Similarity<T, R, D>
|
||
where
|
||
R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
|
||
T::Epsilon: Clone,
|
||
{
|
||
#[inline]
|
||
fn default_max_ulps() -> u32 {
|
||
T::default_max_ulps()
|
||
}
|
||
|
||
#[inline]
|
||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||
self.isometry
|
||
.ulps_eq(&other.isometry, epsilon.clone(), max_ulps)
|
||
&& self.scaling.ulps_eq(&other.scaling, epsilon, max_ulps)
|
||
}
|
||
}
|
||
|
||
/*
|
||
*
|
||
* Display
|
||
*
|
||
*/
|
||
impl<T, R, const D: usize> fmt::Display for Similarity<T, R, D>
|
||
where
|
||
T: RealField + fmt::Display,
|
||
R: AbstractRotation<T, D> + fmt::Display,
|
||
{
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||
let precision = f.precision().unwrap_or(3);
|
||
|
||
writeln!(f, "Similarity {{")?;
|
||
write!(f, "{:.*}", precision, self.isometry)?;
|
||
write!(f, "Scaling: {:.*}", precision, self.scaling)?;
|
||
writeln!(f, "}}")
|
||
}
|
||
}
|