nalgebra/src/base/default_allocator.rs
2023-08-14 11:40:03 +07:00

336 lines
11 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! The default matrix data storage allocator.
//!
//! This will use stack-allocated buffers for matrices with dimensions known at compile-time, and
//! heap-allocated buffers for matrices with at least one dimension unknown at compile-time.
use std::cmp;
use std::ptr;
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
use super::Const;
use crate::base::allocator::{Allocator, Reallocator};
use crate::base::array_storage::ArrayStorage;
use crate::base::dimension::Dim;
#[cfg(any(feature = "alloc", feature = "std"))]
use crate::base::dimension::{DimName, Dyn};
use crate::base::storage::{RawStorage, RawStorageMut};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::vec_storage::VecStorage;
use crate::base::Scalar;
#[cfg(any(feature = "std", feature = "alloc"))]
use std::mem::ManuallyDrop;
use std::mem::MaybeUninit;
/*
*
* Allocator.
*
*/
/// An allocator based on [`ArrayStorage`] and [`VecStorage`] for statically-sized and dynamically-sized
/// matrices respectively.
#[derive(Copy, Clone, Debug)]
pub struct DefaultAllocator;
// Static - Static
impl<T: Scalar, const R: usize, const C: usize> Allocator<T, Const<R>, Const<C>>
for DefaultAllocator
{
type Buffer = ArrayStorage<T, R, C>;
type BufferUninit = ArrayStorage<MaybeUninit<T>, R, C>;
#[inline(always)]
fn allocate_uninit(_: Const<R>, _: Const<C>) -> ArrayStorage<MaybeUninit<T>, R, C> {
// SAFETY: An uninitialized `[MaybeUninit<_>; _]` is valid.
let array: [[MaybeUninit<T>; R]; C] = unsafe { MaybeUninit::uninit().assume_init() };
ArrayStorage(array)
}
#[inline(always)]
unsafe fn assume_init(uninit: ArrayStorage<MaybeUninit<T>, R, C>) -> ArrayStorage<T, R, C> {
// Safety:
// * The caller guarantees that all elements of the array are initialized
// * `MaybeUninit<T>` and T are guaranteed to have the same layout
// * `MaybeUninit` does not drop, so there are no double-frees
// And thus the conversion is safe
ArrayStorage((&uninit as *const _ as *const [_; C]).read())
}
#[inline]
fn allocate_from_iterator<I: IntoIterator<Item = T>>(
nrows: Const<R>,
ncols: Const<C>,
iter: I,
) -> Self::Buffer {
let mut res = Self::allocate_uninit(nrows, ncols);
let mut count = 0;
// Safety: conversion to a slice is OK because the Buffer is known to be contiguous.
let res_slice = unsafe { res.as_mut_slice_unchecked() };
for (res, e) in res_slice.iter_mut().zip(iter.into_iter()) {
*res = MaybeUninit::new(e);
count += 1;
}
assert!(
count == nrows.value() * ncols.value(),
"Matrix init. from iterator: iterator not long enough."
);
// Safety: the assertion above made sure that the iterator
// yielded enough elements to initialize our matrix.
unsafe { <Self as Allocator<T, Const<R>, Const<C>>>::assume_init(res) }
}
}
// Dyn - Static
// Dyn - Dyn
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, C: Dim> Allocator<T, Dyn, C> for DefaultAllocator {
type Buffer = VecStorage<T, Dyn, C>;
type BufferUninit = VecStorage<MaybeUninit<T>, Dyn, C>;
#[inline]
fn allocate_uninit(nrows: Dyn, ncols: C) -> VecStorage<MaybeUninit<T>, Dyn, C> {
let mut data = Vec::new();
let length = nrows.value() * ncols.value();
data.reserve_exact(length);
data.resize_with(length, MaybeUninit::uninit);
VecStorage::new(nrows, ncols, data)
}
#[inline]
unsafe fn assume_init(uninit: VecStorage<MaybeUninit<T>, Dyn, C>) -> VecStorage<T, Dyn, C> {
// Avoids a double-drop.
let (nrows, ncols) = uninit.shape();
let vec: Vec<_> = uninit.into();
let mut md = ManuallyDrop::new(vec);
// Safety:
// - MaybeUninit<T> has the same alignment and layout as T.
// - The length and capacity come from a valid vector.
let new_data = Vec::from_raw_parts(md.as_mut_ptr() as *mut _, md.len(), md.capacity());
VecStorage::new(nrows, ncols, new_data)
}
#[inline]
fn allocate_from_iterator<I: IntoIterator<Item = T>>(
nrows: Dyn,
ncols: C,
iter: I,
) -> Self::Buffer {
let it = iter.into_iter();
let res: Vec<T> = it.collect();
assert!(res.len() == nrows.value() * ncols.value(),
"Allocation from iterator error: the iterator did not yield the correct number of elements.");
VecStorage::new(nrows, ncols, res)
}
}
// Static - Dyn
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, R: DimName> Allocator<T, R, Dyn> for DefaultAllocator {
type Buffer = VecStorage<T, R, Dyn>;
type BufferUninit = VecStorage<MaybeUninit<T>, R, Dyn>;
#[inline]
fn allocate_uninit(nrows: R, ncols: Dyn) -> VecStorage<MaybeUninit<T>, R, Dyn> {
let mut data = Vec::new();
let length = nrows.value() * ncols.value();
data.reserve_exact(length);
data.resize_with(length, MaybeUninit::uninit);
VecStorage::new(nrows, ncols, data)
}
#[inline]
unsafe fn assume_init(uninit: VecStorage<MaybeUninit<T>, R, Dyn>) -> VecStorage<T, R, Dyn> {
// Avoids a double-drop.
let (nrows, ncols) = uninit.shape();
let vec: Vec<_> = uninit.into();
let mut md = ManuallyDrop::new(vec);
// Safety:
// - MaybeUninit<T> has the same alignment and layout as T.
// - The length and capacity come from a valid vector.
let new_data = Vec::from_raw_parts(md.as_mut_ptr() as *mut _, md.len(), md.capacity());
VecStorage::new(nrows, ncols, new_data)
}
#[inline]
fn allocate_from_iterator<I: IntoIterator<Item = T>>(
nrows: R,
ncols: Dyn,
iter: I,
) -> Self::Buffer {
let it = iter.into_iter();
let res: Vec<T> = it.collect();
assert!(res.len() == nrows.value() * ncols.value(),
"Allocation from iterator error: the iterator did not yield the correct number of elements.");
VecStorage::new(nrows, ncols, res)
}
}
/*
*
* Reallocator.
*
*/
// Anything -> Static × Static
impl<T: Scalar, RFrom, CFrom, const RTO: usize, const CTO: usize>
Reallocator<T, RFrom, CFrom, Const<RTO>, Const<CTO>> for DefaultAllocator
where
RFrom: Dim,
CFrom: Dim,
Self: Allocator<T, RFrom, CFrom>,
{
#[inline]
unsafe fn reallocate_copy(
rto: Const<RTO>,
cto: Const<CTO>,
buf: <Self as Allocator<T, RFrom, CFrom>>::Buffer,
) -> ArrayStorage<MaybeUninit<T>, RTO, CTO> {
let mut res = <Self as Allocator<T, Const<RTO>, Const<CTO>>>::allocate_uninit(rto, cto);
let (rfrom, cfrom) = buf.shape();
let len_from = rfrom.value() * cfrom.value();
let len_to = rto.value() * cto.value();
let len_copied = cmp::min(len_from, len_to);
ptr::copy_nonoverlapping(buf.ptr(), res.ptr_mut() as *mut T, len_copied);
// Safety:
// - We dont care about dropping elements because the caller is responsible for dropping things.
// - We forget `buf` so that we dont drop the other elements.
std::mem::forget(buf);
res
}
}
// Static × Static -> Dyn × Any
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, CTo, const RFROM: usize, const CFROM: usize>
Reallocator<T, Const<RFROM>, Const<CFROM>, Dyn, CTo> for DefaultAllocator
where
CTo: Dim,
{
#[inline]
unsafe fn reallocate_copy(
rto: Dyn,
cto: CTo,
buf: ArrayStorage<T, RFROM, CFROM>,
) -> VecStorage<MaybeUninit<T>, Dyn, CTo> {
let mut res = <Self as Allocator<T, Dyn, CTo>>::allocate_uninit(rto, cto);
let (rfrom, cfrom) = buf.shape();
let len_from = rfrom.value() * cfrom.value();
let len_to = rto.value() * cto.value();
let len_copied = cmp::min(len_from, len_to);
ptr::copy_nonoverlapping(buf.ptr(), res.ptr_mut() as *mut T, len_copied);
// Safety:
// - We dont care about dropping elements because the caller is responsible for dropping things.
// - We forget `buf` so that we dont drop the other elements.
std::mem::forget(buf);
res
}
}
// Static × Static -> Static × Dyn
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, RTo, const RFROM: usize, const CFROM: usize>
Reallocator<T, Const<RFROM>, Const<CFROM>, RTo, Dyn> for DefaultAllocator
where
RTo: DimName,
{
#[inline]
unsafe fn reallocate_copy(
rto: RTo,
cto: Dyn,
buf: ArrayStorage<T, RFROM, CFROM>,
) -> VecStorage<MaybeUninit<T>, RTo, Dyn> {
let mut res = <Self as Allocator<T, RTo, Dyn>>::allocate_uninit(rto, cto);
let (rfrom, cfrom) = buf.shape();
let len_from = rfrom.value() * cfrom.value();
let len_to = rto.value() * cto.value();
let len_copied = cmp::min(len_from, len_to);
ptr::copy_nonoverlapping(buf.ptr(), res.ptr_mut() as *mut T, len_copied);
// Safety:
// - We dont care about dropping elements because the caller is responsible for dropping things.
// - We forget `buf` so that we dont drop the other elements.
std::mem::forget(buf);
res
}
}
// All conversion from a dynamic buffer to a dynamic buffer.
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, CFrom: Dim, CTo: Dim> Reallocator<T, Dyn, CFrom, Dyn, CTo> for DefaultAllocator {
#[inline]
unsafe fn reallocate_copy(
rto: Dyn,
cto: CTo,
buf: VecStorage<T, Dyn, CFrom>,
) -> VecStorage<MaybeUninit<T>, Dyn, CTo> {
let new_buf = buf.resize(rto.value() * cto.value());
VecStorage::new(rto, cto, new_buf)
}
}
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, CFrom: Dim, RTo: DimName> Reallocator<T, Dyn, CFrom, RTo, Dyn>
for DefaultAllocator
{
#[inline]
unsafe fn reallocate_copy(
rto: RTo,
cto: Dyn,
buf: VecStorage<T, Dyn, CFrom>,
) -> VecStorage<MaybeUninit<T>, RTo, Dyn> {
let new_buf = buf.resize(rto.value() * cto.value());
VecStorage::new(rto, cto, new_buf)
}
}
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, RFrom: DimName, CTo: Dim> Reallocator<T, RFrom, Dyn, Dyn, CTo>
for DefaultAllocator
{
#[inline]
unsafe fn reallocate_copy(
rto: Dyn,
cto: CTo,
buf: VecStorage<T, RFrom, Dyn>,
) -> VecStorage<MaybeUninit<T>, Dyn, CTo> {
let new_buf = buf.resize(rto.value() * cto.value());
VecStorage::new(rto, cto, new_buf)
}
}
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, RFrom: DimName, RTo: DimName> Reallocator<T, RFrom, Dyn, RTo, Dyn>
for DefaultAllocator
{
#[inline]
unsafe fn reallocate_copy(
rto: RTo,
cto: Dyn,
buf: VecStorage<T, RFrom, Dyn>,
) -> VecStorage<MaybeUninit<T>, RTo, Dyn> {
let new_buf = buf.resize(rto.value() * cto.value());
VecStorage::new(rto, cto, new_buf)
}
}