a5b2a4ceb7
Correct Schur decomposition for 2x2 matrices
581 lines
19 KiB
Rust
581 lines
19 KiB
Rust
#[cfg(feature = "serde-serialize")]
|
||
use serde::{Deserialize, Serialize};
|
||
|
||
use approx::AbsDiffEq;
|
||
use alga::general::{ComplexField, RealField};
|
||
use num_complex::Complex as NumComplex;
|
||
use std::cmp;
|
||
|
||
use crate::allocator::Allocator;
|
||
use crate::base::dimension::{Dim, DimDiff, DimSub, Dynamic, U1, U2, U3};
|
||
use crate::base::storage::Storage;
|
||
use crate::base::{DefaultAllocator, MatrixN, SquareMatrix, Unit, Vector2, Vector3, VectorN};
|
||
|
||
use crate::geometry::Reflection;
|
||
use crate::linalg::householder;
|
||
use crate::linalg::Hessenberg;
|
||
use crate::linalg::givens::GivensRotation;
|
||
|
||
/// Schur decomposition of a square matrix.
|
||
///
|
||
/// If this is a real matrix, this will be a RealField Schur decomposition.
|
||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize",
|
||
serde(bound(
|
||
serialize = "DefaultAllocator: Allocator<N, D, D>,
|
||
MatrixN<N, D>: Serialize"
|
||
))
|
||
)]
|
||
#[cfg_attr(
|
||
feature = "serde-serialize",
|
||
serde(bound(
|
||
deserialize = "DefaultAllocator: Allocator<N, D, D>,
|
||
MatrixN<N, D>: Deserialize<'de>"
|
||
))
|
||
)]
|
||
#[derive(Clone, Debug)]
|
||
pub struct Schur<N: ComplexField, D: Dim>
|
||
where DefaultAllocator: Allocator<N, D, D>
|
||
{
|
||
q: MatrixN<N, D>,
|
||
t: MatrixN<N, D>,
|
||
}
|
||
|
||
impl<N: ComplexField, D: Dim> Copy for Schur<N, D>
|
||
where
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
MatrixN<N, D>: Copy,
|
||
{}
|
||
|
||
impl<N: ComplexField, D: Dim> Schur<N, D>
|
||
where
|
||
D: DimSub<U1>, // For Hessenberg.
|
||
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
|
||
+ Allocator<N, DimDiff<D, U1>>
|
||
+ Allocator<N, D, D>
|
||
+ Allocator<N, D>,
|
||
{
|
||
/// Computes the Schur decomposition of a square matrix.
|
||
pub fn new(m: MatrixN<N, D>) -> Self {
|
||
Self::try_new(m, N::RealField::default_epsilon(), 0).unwrap()
|
||
}
|
||
|
||
/// Attempts to compute the Schur decomposition of a square matrix.
|
||
///
|
||
/// If only eigenvalues are needed, it is more efficient to call the matrix method
|
||
/// `.eigenvalues()` instead.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||
/// continues indefinitely until convergence.
|
||
pub fn try_new(m: MatrixN<N, D>, eps: N::RealField, max_niter: usize) -> Option<Self> {
|
||
let mut work = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) };
|
||
|
||
Self::do_decompose(m, &mut work, eps, max_niter, true).map(|(q, t)| Schur {
|
||
q: q.unwrap(),
|
||
t: t,
|
||
})
|
||
}
|
||
|
||
fn do_decompose(
|
||
mut m: MatrixN<N, D>,
|
||
work: &mut VectorN<N, D>,
|
||
eps: N::RealField,
|
||
max_niter: usize,
|
||
compute_q: bool,
|
||
) -> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)>
|
||
{
|
||
assert!(
|
||
m.is_square(),
|
||
"Unable to compute the eigenvectors and eigenvalues of a non-square matrix."
|
||
);
|
||
|
||
let dim = m.data.shape().0;
|
||
|
||
// Specialization would make this easier.
|
||
if dim.value() == 0 {
|
||
let vecs = Some(MatrixN::from_element_generic(dim, dim, N::zero()));
|
||
let vals = MatrixN::from_element_generic(dim, dim, N::zero());
|
||
return Some((vecs, vals));
|
||
} else if dim.value() == 1 {
|
||
if compute_q {
|
||
let q = MatrixN::from_element_generic(dim, dim, N::one());
|
||
return Some((Some(q), m));
|
||
} else {
|
||
return Some((None, m));
|
||
}
|
||
} else if dim.value() == 2 {
|
||
return decompose_2x2(m, compute_q);
|
||
}
|
||
|
||
let amax_m = m.camax();
|
||
m.unscale_mut(amax_m);
|
||
|
||
let hess = Hessenberg::new_with_workspace(m, work);
|
||
let mut q;
|
||
let mut t;
|
||
|
||
if compute_q {
|
||
// FIXME: could we work without unpacking? Using only the internal representation of
|
||
// hessenberg decomposition.
|
||
let (vecs, vals) = hess.unpack();
|
||
q = Some(vecs);
|
||
t = vals;
|
||
} else {
|
||
q = None;
|
||
t = hess.unpack_h()
|
||
}
|
||
|
||
// Implicit double-shift QR method.
|
||
let mut niter = 0;
|
||
let (mut start, mut end) = Self::delimit_subproblem(&mut t, eps, dim.value() - 1);
|
||
|
||
while end != start {
|
||
let subdim = end - start + 1;
|
||
|
||
if subdim > 2 {
|
||
let m = end - 1;
|
||
let n = end;
|
||
|
||
let h11 = t[(start + 0, start + 0)];
|
||
let h12 = t[(start + 0, start + 1)];
|
||
let h21 = t[(start + 1, start + 0)];
|
||
let h22 = t[(start + 1, start + 1)];
|
||
let h32 = t[(start + 2, start + 1)];
|
||
|
||
let hnn = t[(n, n)];
|
||
let hmm = t[(m, m)];
|
||
let hnm = t[(n, m)];
|
||
let hmn = t[(m, n)];
|
||
|
||
let tra = hnn + hmm;
|
||
let det = hnn * hmm - hnm * hmn;
|
||
|
||
let mut axis = Vector3::new(
|
||
h11 * h11 + h12 * h21 - tra * h11 + det,
|
||
h21 * (h11 + h22 - tra),
|
||
h21 * h32,
|
||
);
|
||
|
||
for k in start..n - 1 {
|
||
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
|
||
|
||
if not_zero {
|
||
if k > start {
|
||
t[(k + 0, k - 1)] = norm;
|
||
t[(k + 1, k - 1)] = N::zero();
|
||
t[(k + 2, k - 1)] = N::zero();
|
||
}
|
||
|
||
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
||
|
||
{
|
||
let krows = cmp::min(k + 4, end + 1);
|
||
let mut work = work.rows_mut(0, krows);
|
||
refl.reflect(
|
||
&mut t
|
||
.generic_slice_mut((k, k), (U3, Dynamic::new(dim.value() - k))),
|
||
);
|
||
refl.reflect_rows(
|
||
&mut t.generic_slice_mut((0, k), (Dynamic::new(krows), U3)),
|
||
&mut work,
|
||
);
|
||
}
|
||
|
||
if let Some(ref mut q) = q {
|
||
refl.reflect_rows(&mut q.generic_slice_mut((0, k), (dim, U3)), work);
|
||
}
|
||
}
|
||
|
||
axis.x = t[(k + 1, k)];
|
||
axis.y = t[(k + 2, k)];
|
||
|
||
if k < n - 2 {
|
||
axis.z = t[(k + 3, k)];
|
||
}
|
||
}
|
||
|
||
let mut axis = Vector2::new(axis.x, axis.y);
|
||
let (norm, not_zero) = householder::reflection_axis_mut(&mut axis);
|
||
|
||
if not_zero {
|
||
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
||
|
||
t[(m, m - 1)] = norm;
|
||
t[(n, m - 1)] = N::zero();
|
||
|
||
{
|
||
let mut work = work.rows_mut(0, end + 1);
|
||
refl.reflect(
|
||
&mut t.generic_slice_mut((m, m), (U2, Dynamic::new(dim.value() - m))),
|
||
);
|
||
refl.reflect_rows(
|
||
&mut t.generic_slice_mut((0, m), (Dynamic::new(end + 1), U2)),
|
||
&mut work,
|
||
);
|
||
}
|
||
|
||
if let Some(ref mut q) = q {
|
||
refl.reflect_rows(&mut q.generic_slice_mut((0, m), (dim, U2)), work);
|
||
}
|
||
}
|
||
} else {
|
||
// Decouple the 2x2 block if it has real eigenvalues.
|
||
if let Some(rot) = compute_2x2_basis(&t.fixed_slice::<U2, U2>(start, start)) {
|
||
let inv_rot = rot.inverse();
|
||
inv_rot.rotate(&mut t.generic_slice_mut(
|
||
(start, start),
|
||
(U2, Dynamic::new(dim.value() - start)),
|
||
));
|
||
rot.rotate_rows(
|
||
&mut t.generic_slice_mut((0, start), (Dynamic::new(end + 1), U2)),
|
||
);
|
||
t[(end, start)] = N::zero();
|
||
|
||
if let Some(ref mut q) = q {
|
||
rot.rotate_rows(&mut q.generic_slice_mut((0, start), (dim, U2)));
|
||
}
|
||
}
|
||
|
||
// Check if we reached the beginning of the matrix.
|
||
if end > 2 {
|
||
end -= 2;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
|
||
let sub = Self::delimit_subproblem(&mut t, eps, end);
|
||
|
||
start = sub.0;
|
||
end = sub.1;
|
||
|
||
niter += 1;
|
||
if niter == max_niter {
|
||
return None;
|
||
}
|
||
}
|
||
|
||
t.scale_mut(amax_m);
|
||
|
||
Some((q, t))
|
||
}
|
||
|
||
/// Computes the eigenvalues of the decomposed matrix.
|
||
fn do_eigenvalues(t: &MatrixN<N, D>, out: &mut VectorN<N, D>) -> bool {
|
||
let dim = t.nrows();
|
||
let mut m = 0;
|
||
|
||
while m < dim - 1 {
|
||
let n = m + 1;
|
||
|
||
if t[(n, m)].is_zero() {
|
||
out[m] = t[(m, m)];
|
||
m += 1;
|
||
} else {
|
||
// Complex eigenvalue.
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if m == dim - 1 {
|
||
out[m] = t[(m, m)];
|
||
}
|
||
|
||
true
|
||
}
|
||
|
||
/// Computes the complex eigenvalues of the decomposed matrix.
|
||
fn do_complex_eigenvalues(t: &MatrixN<N, D>, out: &mut VectorN<NumComplex<N>, D>)
|
||
where N: RealField,
|
||
DefaultAllocator: Allocator<NumComplex<N>, D> {
|
||
let dim = t.nrows();
|
||
let mut m = 0;
|
||
|
||
while m < dim - 1 {
|
||
let n = m + 1;
|
||
|
||
if t[(n, m)].is_zero() {
|
||
out[m] = NumComplex::new(t[(m, m)], N::zero());
|
||
m += 1;
|
||
} else {
|
||
// Solve the 2x2 eigenvalue subproblem.
|
||
let hmm = t[(m, m)];
|
||
let hnm = t[(n, m)];
|
||
let hmn = t[(m, n)];
|
||
let hnn = t[(n, n)];
|
||
|
||
// NOTE: use the same algorithm as in compute_2x2_eigvals.
|
||
let val = (hmm - hnn) * crate::convert(0.5);
|
||
let discr = hnm * hmn + val * val;
|
||
|
||
// All 2x2 blocks have negative discriminant because we already decoupled those
|
||
// with positive eigenvalues.
|
||
let sqrt_discr = NumComplex::new(N::zero(), (-discr).sqrt());
|
||
|
||
let half_tra = (hnn + hmm) * crate::convert(0.5);
|
||
out[m] = NumComplex::new(half_tra, N::zero()) + sqrt_discr;
|
||
out[m + 1] = NumComplex::new(half_tra, N::zero()) - sqrt_discr;
|
||
|
||
m += 2;
|
||
}
|
||
}
|
||
|
||
if m == dim - 1 {
|
||
out[m] = NumComplex::new(t[(m, m)], N::zero());
|
||
}
|
||
}
|
||
|
||
fn delimit_subproblem(t: &mut MatrixN<N, D>, eps: N::RealField, end: usize) -> (usize, usize)
|
||
where
|
||
D: DimSub<U1>,
|
||
DefaultAllocator: Allocator<N, DimDiff<D, U1>>,
|
||
{
|
||
let mut n = end;
|
||
|
||
while n > 0 {
|
||
let m = n - 1;
|
||
|
||
if t[(n, m)].norm1() <= eps * (t[(n, n)].norm1() + t[(m, m)].norm1()) {
|
||
t[(n, m)] = N::zero();
|
||
} else {
|
||
break;
|
||
}
|
||
|
||
n -= 1;
|
||
}
|
||
|
||
if n == 0 {
|
||
return (0, 0);
|
||
}
|
||
|
||
let mut new_start = n - 1;
|
||
while new_start > 0 {
|
||
let m = new_start - 1;
|
||
|
||
let off_diag = t[(new_start, m)];
|
||
if off_diag.is_zero()
|
||
|| off_diag.norm1() <= eps * (t[(new_start, new_start)].norm1() + t[(m, m)].norm1())
|
||
{
|
||
t[(new_start, m)] = N::zero();
|
||
break;
|
||
}
|
||
|
||
new_start -= 1;
|
||
}
|
||
|
||
(new_start, n)
|
||
}
|
||
|
||
/// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the
|
||
/// decomposed matrix equals `Q * T * Q.transpose()`.
|
||
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>) {
|
||
(self.q, self.t)
|
||
}
|
||
|
||
/// Computes the real eigenvalues of the decomposed matrix.
|
||
///
|
||
/// Return `None` if some eigenvalues are complex.
|
||
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
|
||
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
|
||
if Self::do_eigenvalues(&self.t, &mut out) {
|
||
Some(out)
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/// Computes the complex eigenvalues of the decomposed matrix.
|
||
pub fn complex_eigenvalues(&self) -> VectorN<NumComplex<N>, D>
|
||
where N: RealField,
|
||
DefaultAllocator: Allocator<NumComplex<N>, D> {
|
||
let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) };
|
||
Self::do_complex_eigenvalues(&self.t, &mut out);
|
||
out
|
||
}
|
||
}
|
||
|
||
fn decompose_2x2<N: ComplexField, D: Dim>(
|
||
mut m: MatrixN<N, D>,
|
||
compute_q: bool,
|
||
) -> Option<(Option<MatrixN<N, D>>, MatrixN<N, D>)>
|
||
where
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
{
|
||
let dim = m.data.shape().0;
|
||
let mut q = None;
|
||
match compute_2x2_basis(&m.fixed_slice::<U2, U2>(0, 0)) {
|
||
Some(rot) => {
|
||
let mut m = m.fixed_slice_mut::<U2, U2>(0, 0);
|
||
let inv_rot = rot.inverse();
|
||
inv_rot.rotate(&mut m);
|
||
rot.rotate_rows(&mut m);
|
||
m[(1, 0)] = N::zero();
|
||
|
||
if compute_q {
|
||
// XXX: we have to build the matrix manually because
|
||
// rot.to_rotation_matrix().unwrap() causes an ICE.
|
||
let c = N::from_real(rot.c());
|
||
q = Some(MatrixN::from_column_slice_generic(
|
||
dim,
|
||
dim,
|
||
&[c, rot.s(), -rot.s().conjugate(), c],
|
||
));
|
||
}
|
||
}
|
||
None => {
|
||
if compute_q {
|
||
q = Some(MatrixN::identity_generic(dim, dim));
|
||
}
|
||
}
|
||
};
|
||
|
||
Some((q, m))
|
||
}
|
||
|
||
fn compute_2x2_eigvals<N: ComplexField, S: Storage<N, U2, U2>>(
|
||
m: &SquareMatrix<N, U2, S>,
|
||
) -> Option<(N, N)> {
|
||
// Solve the 2x2 eigenvalue subproblem.
|
||
let h00 = m[(0, 0)];
|
||
let h10 = m[(1, 0)];
|
||
let h01 = m[(0, 1)];
|
||
let h11 = m[(1, 1)];
|
||
|
||
// NOTE: this discriminant computation is more stable than the
|
||
// one based on the trace and determinant: 0.25 * tra * tra - det
|
||
// because it ensures positiveness for symmetric matrices.
|
||
let val = (h00 - h11) * crate::convert(0.5);
|
||
let discr = h10 * h01 + val * val;
|
||
|
||
discr.try_sqrt().map(|sqrt_discr| {
|
||
let half_tra = (h00 + h11) * crate::convert(0.5);
|
||
(half_tra + sqrt_discr, half_tra - sqrt_discr)
|
||
})
|
||
}
|
||
|
||
// Computes the 2x2 transformation that upper-triangulates a 2x2 matrix with real eigenvalues.
|
||
/// Computes the singular vectors for a 2x2 matrix.
|
||
///
|
||
/// Returns `None` if the matrix has complex eigenvalues, or is upper-triangular. In both case,
|
||
/// the basis is the identity.
|
||
fn compute_2x2_basis<N: ComplexField, S: Storage<N, U2, U2>>(
|
||
m: &SquareMatrix<N, U2, S>,
|
||
) -> Option<GivensRotation<N>> {
|
||
let h10 = m[(1, 0)];
|
||
|
||
if h10.is_zero() {
|
||
return None;
|
||
}
|
||
|
||
if let Some((eigval1, eigval2)) = compute_2x2_eigvals(m) {
|
||
let x1 = eigval1 - m[(1, 1)];
|
||
let x2 = eigval2 - m[(1, 1)];
|
||
|
||
// NOTE: Choose the one that yields a larger x component.
|
||
// This is necessary for numerical stability of the normalization of the complex
|
||
// number.
|
||
if x1.norm1() > x2.norm1() {
|
||
Some(GivensRotation::new(x1, h10).0)
|
||
} else {
|
||
Some(GivensRotation::new(x2, h10).0)
|
||
}
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
impl<N: ComplexField, D: Dim, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||
where
|
||
D: DimSub<U1>, // For Hessenberg.
|
||
DefaultAllocator: Allocator<N, D, DimDiff<D, U1>>
|
||
+ Allocator<N, DimDiff<D, U1>>
|
||
+ Allocator<N, D, D>
|
||
+ Allocator<N, D>,
|
||
{
|
||
/// Computes the Schur decomposition of a square matrix.
|
||
pub fn schur(self) -> Schur<N, D> {
|
||
Schur::new(self.into_owned())
|
||
}
|
||
|
||
/// Attempts to compute the Schur decomposition of a square matrix.
|
||
///
|
||
/// If only eigenvalues are needed, it is more efficient to call the matrix method
|
||
/// `.eigenvalues()` instead.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * `eps` − tolerance used to determine when a value converged to 0.
|
||
/// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
|
||
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
|
||
/// continues indefinitely until convergence.
|
||
pub fn try_schur(self, eps: N::RealField, max_niter: usize) -> Option<Schur<N, D>> {
|
||
Schur::try_new(self.into_owned(), eps, max_niter)
|
||
}
|
||
|
||
/// Computes the eigenvalues of this matrix.
|
||
pub fn eigenvalues(&self) -> Option<VectorN<N, D>> {
|
||
assert!(
|
||
self.is_square(),
|
||
"Unable to compute eigenvalues of a non-square matrix."
|
||
);
|
||
|
||
let mut work = unsafe { VectorN::new_uninitialized_generic(self.data.shape().0, U1) };
|
||
|
||
// Special case for 2x2 matrices.
|
||
if self.nrows() == 2 {
|
||
// FIXME: can we avoid this slicing
|
||
// (which is needed here just to transform D to U2)?
|
||
let me = self.fixed_slice::<U2, U2>(0, 0);
|
||
return match compute_2x2_eigvals(&me) {
|
||
Some((a, b)) => {
|
||
work[0] = a;
|
||
work[1] = b;
|
||
Some(work)
|
||
}
|
||
None => None,
|
||
};
|
||
}
|
||
|
||
// FIXME: add balancing?
|
||
let schur = Schur::do_decompose(
|
||
self.clone_owned(),
|
||
&mut work,
|
||
N::RealField::default_epsilon(),
|
||
0,
|
||
false,
|
||
)
|
||
.unwrap();
|
||
if Schur::do_eigenvalues(&schur.1, &mut work) {
|
||
Some(work)
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/// Computes the eigenvalues of this matrix.
|
||
pub fn complex_eigenvalues(&self) -> VectorN<NumComplex<N>, D>
|
||
// FIXME: add balancing?
|
||
where N: RealField,
|
||
DefaultAllocator: Allocator<NumComplex<N>, D> {
|
||
let dim = self.data.shape().0;
|
||
let mut work = unsafe { VectorN::new_uninitialized_generic(dim, U1) };
|
||
|
||
let schur = Schur::do_decompose(
|
||
self.clone_owned(),
|
||
&mut work,
|
||
N::default_epsilon(),
|
||
0,
|
||
false,
|
||
)
|
||
.unwrap();
|
||
let mut eig = unsafe { VectorN::new_uninitialized_generic(dim, U1) };
|
||
Schur::do_complex_eigenvalues(&schur.1, &mut eig);
|
||
eig
|
||
}
|
||
}
|