nalgebra/src/linalg/hessenberg.rs

155 lines
4.9 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, OMatrix, OVector};
use crate::dimension::{Const, DimDiff, DimSub, U1};
use simba::scalar::ComplexField;
use crate::linalg::householder;
use crate::Matrix;
use std::mem::MaybeUninit;
/// Hessenberg decomposition of a general matrix.
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(serialize = "DefaultAllocator: Allocator<T, D, D> +
Allocator<T, DimDiff<D, U1>>,
OMatrix<T, D, D>: Serialize,
OVector<T, DimDiff<D, U1>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(deserialize = "DefaultAllocator: Allocator<T, D, D> +
Allocator<T, DimDiff<D, U1>>,
OMatrix<T, D, D>: Deserialize<'de>,
OVector<T, DimDiff<D, U1>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Hessenberg<T: ComplexField, D: DimSub<U1>>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
{
hess: OMatrix<T, D, D>,
subdiag: OVector<T, DimDiff<D, U1>>,
}
impl<T: ComplexField, D: DimSub<U1>> Copy for Hessenberg<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, DimDiff<D, U1>>,
OMatrix<T, D, D>: Copy,
OVector<T, DimDiff<D, U1>>: Copy,
{
}
impl<T: ComplexField, D: DimSub<U1>> Hessenberg<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D> + Allocator<T, DimDiff<D, U1>>,
{
/// Computes the Hessenberg decomposition using householder reflections.
pub fn new(hess: OMatrix<T, D, D>) -> Self {
let mut work = Matrix::zeros_generic(hess.shape_generic().0, Const::<1>);
Self::new_with_workspace(hess, &mut work)
}
/// Computes the Hessenberg decomposition using householder reflections.
///
/// The workspace containing `D` elements must be provided but its content does not have to be
/// initialized.
pub fn new_with_workspace(mut hess: OMatrix<T, D, D>, work: &mut OVector<T, D>) -> Self {
assert!(
hess.is_square(),
"Cannot compute the hessenberg decomposition of a non-square matrix."
);
let dim = hess.shape_generic().0;
assert!(
dim.value() != 0,
"Cannot compute the hessenberg decomposition of an empty matrix."
);
assert_eq!(
dim.value(),
work.len(),
"Hessenberg: invalid workspace size."
);
if dim.value() == 0 {
return Hessenberg {
hess,
subdiag: Matrix::zeros_generic(dim.sub(Const::<1>), Const::<1>),
};
}
let mut subdiag = Matrix::uninit(dim.sub(Const::<1>), Const::<1>);
for ite in 0..dim.value() - 1 {
subdiag[ite] = MaybeUninit::new(householder::clear_column_unchecked(
&mut hess,
ite,
1,
Some(work),
));
}
// Safety: subdiag is now fully initialized.
let subdiag = unsafe { subdiag.assume_init() };
Hessenberg { hess, subdiag }
}
/// Retrieves `(q, h)` with `q` the orthogonal matrix of this decomposition and `h` the
/// hessenberg matrix.
#[inline]
pub fn unpack(self) -> (OMatrix<T, D, D>, OMatrix<T, D, D>) {
let q = self.q();
(q, self.unpack_h())
}
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
#[inline]
pub fn unpack_h(mut self) -> OMatrix<T, D, D> {
let dim = self.hess.nrows();
self.hess.fill_lower_triangle(T::zero(), 2);
self.hess
.slice_mut((1, 0), (dim - 1, dim - 1))
.set_partial_diagonal(
self.subdiag
.iter()
.map(|e| T::from_real(e.clone().modulus())),
);
self.hess
}
// TODO: add a h that moves out of self.
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
///
/// This is less efficient than `.unpack_h()` as it allocates a new matrix.
#[inline]
#[must_use]
pub fn h(&self) -> OMatrix<T, D, D> {
let dim = self.hess.nrows();
let mut res = self.hess.clone();
res.fill_lower_triangle(T::zero(), 2);
res.slice_mut((1, 0), (dim - 1, dim - 1))
.set_partial_diagonal(
self.subdiag
.iter()
.map(|e| T::from_real(e.clone().modulus())),
);
res
}
/// Computes the orthogonal matrix `Q` of this decomposition.
#[must_use]
pub fn q(&self) -> OMatrix<T, D, D> {
householder::assemble_q(&self.hess, self.subdiag.as_slice())
}
#[doc(hidden)]
pub fn hess_internal(&self) -> &OMatrix<T, D, D> {
&self.hess
}
}