nalgebra/tests/core/blas.rs

121 lines
3.9 KiB
Rust

use na::{geometry::Quaternion, Matrix2, Vector3};
use num_traits::{One, Zero};
#[test]
fn gemm_noncommutative() {
type Qf64 = Quaternion<f64>;
let i = Qf64::from_imag(Vector3::new(1.0, 0.0, 0.0));
let j = Qf64::from_imag(Vector3::new(0.0, 1.0, 0.0));
let k = Qf64::from_imag(Vector3::new(0.0, 0.0, 1.0));
let m1 = Matrix2::new(k, Qf64::zero(), j, i);
// this is the inverse of m1
let m2 = Matrix2::new(-k, Qf64::zero(), Qf64::one(), -i);
let mut res: Matrix2<Qf64> = Matrix2::zero();
res.gemm(Qf64::one(), &m1, &m2, Qf64::zero());
assert_eq!(res, Matrix2::identity());
let mut res: Matrix2<Qf64> = Matrix2::identity();
res.gemm(k, &m1, &m2, -k);
assert_eq!(res, Matrix2::zero());
}
#[cfg(feature = "proptest-support")]
mod blas_proptest {
use crate::proptest::{PROPTEST_F64, PROPTEST_MATRIX_DIM};
use na::{DMatrix, DVector};
use proptest::{prop_assert, proptest};
proptest! {
/*
*
* Symmetric operators.
*
*/
#[test]
fn gemv_symm(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) {
let a = DMatrix::<f64>::new_random(n, n);
let a = &a * a.transpose();
let x = DVector::new_random(n);
let mut y1 = DVector::new_random(n);
let mut y2 = y1.clone();
y1.gemv(alpha, &a, &x, beta);
y2.sygemv(alpha, &a.lower_triangle(), &x, beta);
prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10));
y1.gemv(alpha, &a, &x, 0.0);
y2.sygemv(alpha, &a.lower_triangle(), &x, 0.0);
prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10))
}
#[test]
fn gemv_tr(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) {
let a = DMatrix::<f64>::new_random(n, n);
let x = DVector::new_random(n);
let mut y1 = DVector::new_random(n);
let mut y2 = y1.clone();
y1.gemv(alpha, &a, &x, beta);
y2.gemv_tr(alpha, &a.transpose(), &x, beta);
prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10));
y1.gemv(alpha, &a, &x, 0.0);
y2.gemv_tr(alpha, &a.transpose(), &x, 0.0);
prop_assert!(relative_eq!(y1, y2, epsilon = 1.0e-10))
}
#[test]
fn ger_symm(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) {
let a = DMatrix::<f64>::new_random(n, n);
let mut a1 = &a * a.transpose();
let mut a2 = a1.lower_triangle();
let x = DVector::new_random(n);
let y = DVector::new_random(n);
a1.ger(alpha, &x, &y, beta);
a2.syger(alpha, &x, &y, beta);
prop_assert!(relative_eq!(a1.lower_triangle(), a2));
a1.ger(alpha, &x, &y, 0.0);
a2.syger(alpha, &x, &y, 0.0);
prop_assert!(relative_eq!(a1.lower_triangle(), a2))
}
#[test]
fn quadform(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) {
let rhs = DMatrix::<f64>::new_random(6, n);
let mid = DMatrix::<f64>::new_random(6, 6);
let mut res = DMatrix::new_random(n, n);
let expected = &res * beta + rhs.transpose() * &mid * &rhs * alpha;
res.quadform(alpha, &mid, &rhs, beta);
prop_assert!(relative_eq!(res, expected, epsilon = 1.0e-7))
}
#[test]
fn quadform_tr(n in PROPTEST_MATRIX_DIM, alpha in PROPTEST_F64, beta in PROPTEST_F64) {
let lhs = DMatrix::<f64>::new_random(6, n);
let mid = DMatrix::<f64>::new_random(n, n);
let mut res = DMatrix::new_random(6, 6);
let expected = &res * beta + &lhs * &mid * lhs.transpose() * alpha;
res.quadform_tr(alpha, &lhs, &mid , beta);
prop_assert!(relative_eq!(res, expected, epsilon = 1.0e-7))
}
}
}