nalgebra/src/geometry/similarity.rs
2017-02-15 22:04:34 +01:00

277 lines
9.2 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::fmt;
use approx::ApproxEq;
use alga::general::{ClosedMul, Real, SubsetOf};
use alga::linear::Rotation;
use core::{Scalar, OwnedSquareMatrix};
use core::dimension::{DimName, DimNameSum, DimNameAdd, U1};
use core::storage::{Storage, OwnedStorage};
use core::allocator::{Allocator, OwnedAllocator};
use geometry::{PointBase, TranslationBase, IsometryBase};
/// A similarity that uses a data storage deduced from the allocator `A`.
pub type OwnedSimilarityBase<N, D, A, R> =
SimilarityBase<N, D, <A as Allocator<N, D, U1>>::Buffer, R>;
/// A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.
#[repr(C)]
#[derive(Hash, Debug, Clone, Copy)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct SimilarityBase<N: Scalar, D: DimName, S, R> {
/// The part of this similarity that does not include the scaling factor.
pub isometry: IsometryBase<N, D, S, R>,
scaling: N
}
impl<N, D: DimName, S, R> SimilarityBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>>,
S::Alloc: OwnedAllocator<N, D, U1, S> {
/// Creates a new similarity from its rotational and translational parts.
#[inline]
pub fn from_parts(translation: TranslationBase<N, D, S>, rotation: R, scaling: N) -> SimilarityBase<N, D, S, R> {
SimilarityBase::from_isometry(IsometryBase::from_parts(translation, rotation), scaling)
}
/// Creates a new similarity from its rotational and translational parts.
#[inline]
pub fn from_isometry(isometry: IsometryBase<N, D, S, R>, scaling: N) -> SimilarityBase<N, D, S, R> {
assert!(!relative_eq!(scaling, N::zero()), "The scaling factor must not be zero.");
SimilarityBase {
isometry: isometry,
scaling: scaling
}
}
/// Creates a new similarity that applies only a scaling factor.
#[inline]
pub fn from_scaling(scaling: N) -> SimilarityBase<N, D, S, R> {
Self::from_isometry(IsometryBase::identity(), scaling)
}
/// Inverts `self`.
#[inline]
pub fn inverse(&self) -> SimilarityBase<N, D, S, R> {
let mut res = self.clone();
res.inverse_mut();
res
}
/// Inverts `self` in-place.
#[inline]
pub fn inverse_mut(&mut self) {
self.scaling = N::one() / self.scaling;
self.isometry.inverse_mut();
self.isometry.translation.vector *= self.scaling;
}
/// The scaling factor of this similarity transformation.
#[inline]
pub fn set_scaling(&mut self, scaling: N) {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
self.scaling = scaling;
}
/// The similarity transformation that applies a scaling factor `scaling` before `self`.
#[inline]
pub fn prepend_scaling(&self, scaling: N) -> Self {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
Self::from_isometry(self.isometry.clone(), self.scaling * scaling)
}
/// The similarity transformation that applies a scaling factor `scaling` after `self`.
#[inline]
pub fn append_scaling(&self, scaling: N) -> Self {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
Self::from_parts(
TranslationBase::from_vector(&self.isometry.translation.vector * scaling),
self.isometry.rotation.clone(),
self.scaling * scaling)
}
/// Sets `self` to the similarity transformation that applies a scaling factor `scaling` before `self`.
#[inline]
pub fn prepend_scaling_mut(&mut self, scaling: N) {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
self.scaling *= scaling
}
/// Sets `self` to the similarity transformation that applies a scaling factor `scaling` after `self`.
#[inline]
pub fn append_scaling_mut(&mut self, scaling: N) {
assert!(!relative_eq!(scaling, N::zero()), "The similarity scaling factor must not be zero.");
self.isometry.translation.vector *= scaling;
self.scaling *= scaling;
}
/// Appends to `self` the given translation in-place.
#[inline]
pub fn append_translation_mut(&mut self, t: &TranslationBase<N, D, S>) {
self.isometry.append_translation_mut(t)
}
/// Appends to `self` the given rotation in-place.
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.isometry.append_rotation_mut(r)
}
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
/// lets `p` invariant.
#[inline]
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &PointBase<N, D, S>) {
self.isometry.append_rotation_wrt_point_mut(r, p)
}
/// Appends in-place to `self` a rotation centered at the point with coordinates
/// `self.translation`.
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
self.isometry.append_rotation_wrt_center_mut(r)
}
}
// NOTE: we don't require `R: Rotation<...>` here becaus this is not useful for the implementation
// and makes it harde to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the private scaling factor).
impl<N, D: DimName, S, R> SimilarityBase<N, D, S, R>
where N: Scalar + ClosedMul,
S: Storage<N, D, U1> {
/// Converts this similarity into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>
where D: DimNameAdd<U1>,
R: SubsetOf<OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>>,
S::Alloc: Allocator<N, D, D> +
Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
let mut res = self.isometry.to_homogeneous();
for e in res.fixed_slice_mut::<D, D>(0, 0).iter_mut() {
*e *= self.scaling
}
res
}
/// The scaling factor of this similarity transformation.
#[inline]
pub fn scaling(&self) -> N {
self.scaling
}
}
impl<N, D: DimName, S, R> Eq for SimilarityBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + Eq,
S::Alloc: OwnedAllocator<N, D, U1, S> {
}
impl<N, D: DimName, S, R> PartialEq for SimilarityBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + PartialEq,
S::Alloc: OwnedAllocator<N, D, U1, S> {
#[inline]
fn eq(&self, right: &SimilarityBase<N, D, S, R>) -> bool {
self.isometry == right.isometry && self.scaling == right.scaling
}
}
impl<N, D: DimName, S, R> ApproxEq for SimilarityBase<N, D, S, R>
where N: Real,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + ApproxEq<Epsilon = N::Epsilon>,
S::Alloc: OwnedAllocator<N, D, U1, S>,
N::Epsilon: Copy {
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
self.isometry.relative_eq(&other.isometry, epsilon, max_relative) &&
self.scaling.relative_eq(&other.scaling, epsilon, max_relative)
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.isometry.ulps_eq(&other.isometry, epsilon, max_ulps) &&
self.scaling.ulps_eq(&other.scaling, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<N, D: DimName, S, R> fmt::Display for SimilarityBase<N, D, S, R>
where N: Real + fmt::Display,
S: OwnedStorage<N, D, U1>,
R: Rotation<PointBase<N, D, S>> + fmt::Display,
S::Alloc: OwnedAllocator<N, D, U1, S> + Allocator<usize, D, U1> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
try!(writeln!(f, "SimilarityBase {{"));
try!(write!(f, "{:.*}", precision, self.isometry));
try!(write!(f, "Scaling: {:.*}", precision, self.scaling));
writeln!(f, "}}")
}
}
/*
// /*
// *
// * ToHomogeneous
// *
// */
// impl<N: Real> ToHomogeneous<$homogeneous<N>> for $t<N> {
// #[inline]
// fn to_homogeneous(&self) -> $homogeneous<N> {
// self.vector.to_homogeneous()
// }
// }
// /*
// *
// * Absolute
// *
// */
// impl<N: Absolute> Absolute for $t<N> {
// type AbsoluteValue = $submatrix<N::AbsoluteValue>;
//
// #[inline]
// fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
// Absolute::abs(&m.submatrix)
// }
// }
*/