207 lines
6.9 KiB
Rust
207 lines
6.9 KiB
Rust
use std::fmt;
|
||
use std::marker::PhantomData;
|
||
use approx::ApproxEq;
|
||
|
||
use alga::general::{Real, SubsetOf};
|
||
use alga::linear::Rotation;
|
||
|
||
use core::{Scalar, OwnedSquareMatrix};
|
||
use core::dimension::{DimName, DimNameSum, DimNameAdd, U1};
|
||
use core::storage::{Storage, OwnedStorage};
|
||
use core::allocator::{Allocator, OwnedAllocator};
|
||
use geometry::{TranslationBase, PointBase};
|
||
|
||
|
||
/// An isometry that uses a data storage deduced from the allocator `A`.
|
||
pub type OwnedIsometryBase<N, D, A, R> =
|
||
IsometryBase<N, D, <A as Allocator<N, D, U1>>::Buffer, R>;
|
||
|
||
/// A direct isometry, i.e., a rotation followed by a translation.
|
||
#[repr(C)]
|
||
#[derive(Hash, Debug, Clone, Copy)]
|
||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||
pub struct IsometryBase<N: Scalar, D: DimName, S, R> {
|
||
/// The pure rotational part of this isometry.
|
||
pub rotation: R,
|
||
/// The pure translational part of this isometry.
|
||
pub translation: TranslationBase<N, D, S>,
|
||
|
||
|
||
// One dummy private field just to prevent explicit construction.
|
||
#[cfg_attr(feature = "serde-serialize", serde(skip_serializing, skip_deserializing))]
|
||
_noconstruct: PhantomData<N>
|
||
}
|
||
|
||
impl<N, D: DimName, S, R> IsometryBase<N, D, S, R>
|
||
where N: Real,
|
||
S: OwnedStorage<N, D, U1>,
|
||
R: Rotation<PointBase<N, D, S>>,
|
||
S::Alloc: OwnedAllocator<N, D, U1, S> {
|
||
/// Creates a new isometry from its rotational and translational parts.
|
||
#[inline]
|
||
pub fn from_parts(translation: TranslationBase<N, D, S>, rotation: R) -> IsometryBase<N, D, S, R> {
|
||
IsometryBase {
|
||
rotation: rotation,
|
||
translation: translation,
|
||
_noconstruct: PhantomData
|
||
}
|
||
}
|
||
|
||
/// Inverts `self`.
|
||
#[inline]
|
||
pub fn inverse(&self) -> IsometryBase<N, D, S, R> {
|
||
let mut res = self.clone();
|
||
res.inverse_mut();
|
||
res
|
||
}
|
||
|
||
/// Inverts `self`.
|
||
#[inline]
|
||
pub fn inverse_mut(&mut self) {
|
||
self.rotation.inverse_mut();
|
||
self.translation.inverse_mut();
|
||
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
|
||
}
|
||
|
||
/// Appends to `self` the given translation in-place.
|
||
#[inline]
|
||
pub fn append_translation_mut(&mut self, t: &TranslationBase<N, D, S>) {
|
||
self.translation.vector += &t.vector
|
||
}
|
||
|
||
/// Appends to `self` the given rotation in-place.
|
||
#[inline]
|
||
pub fn append_rotation_mut(&mut self, r: &R) {
|
||
self.rotation = self.rotation.append_rotation(&r);
|
||
self.translation.vector = r.transform_vector(&self.translation.vector);
|
||
}
|
||
|
||
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
|
||
/// lets `p` invariant.
|
||
#[inline]
|
||
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &PointBase<N, D, S>) {
|
||
self.translation.vector -= &p.coords;
|
||
self.append_rotation_mut(r);
|
||
self.translation.vector += &p.coords;
|
||
}
|
||
|
||
/// Appends in-place to `self` a rotation centered at the point with coordinates
|
||
/// `self.translation`.
|
||
#[inline]
|
||
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
|
||
let center = PointBase::from_coordinates(self.translation.vector.clone());
|
||
self.append_rotation_wrt_point_mut(r, ¢er)
|
||
}
|
||
}
|
||
|
||
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
|
||
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
|
||
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
|
||
// explicit struct construction is prevented by the dummy ZST field).
|
||
impl<N, D: DimName, S, R> IsometryBase<N, D, S, R>
|
||
where N: Scalar,
|
||
S: Storage<N, D, U1> {
|
||
/// Converts this isometry into its equivalent homogeneous transformation matrix.
|
||
#[inline]
|
||
pub fn to_homogeneous(&self) -> OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>
|
||
where D: DimNameAdd<U1>,
|
||
R: SubsetOf<OwnedSquareMatrix<N, DimNameSum<D, U1>, S::Alloc>>,
|
||
S::Alloc: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> {
|
||
let mut res: OwnedSquareMatrix<N, _, S::Alloc> = ::convert_ref(&self.rotation);
|
||
res.fixed_slice_mut::<D, U1>(0, D::dim()).copy_from(&self.translation.vector);
|
||
|
||
res
|
||
}
|
||
}
|
||
|
||
|
||
impl<N, D: DimName, S, R> Eq for IsometryBase<N, D, S, R>
|
||
where N: Real,
|
||
S: OwnedStorage<N, D, U1>,
|
||
R: Rotation<PointBase<N, D, S>> + Eq,
|
||
S::Alloc: OwnedAllocator<N, D, U1, S> {
|
||
}
|
||
|
||
impl<N, D: DimName, S, R> PartialEq for IsometryBase<N, D, S, R>
|
||
where N: Real,
|
||
S: OwnedStorage<N, D, U1>,
|
||
R: Rotation<PointBase<N, D, S>> + PartialEq,
|
||
S::Alloc: OwnedAllocator<N, D, U1, S> {
|
||
#[inline]
|
||
fn eq(&self, right: &IsometryBase<N, D, S, R>) -> bool {
|
||
self.translation == right.translation &&
|
||
self.rotation == right.rotation
|
||
}
|
||
}
|
||
|
||
impl<N, D: DimName, S, R> ApproxEq for IsometryBase<N, D, S, R>
|
||
where N: Real,
|
||
S: OwnedStorage<N, D, U1>,
|
||
R: Rotation<PointBase<N, D, S>> + ApproxEq<Epsilon = N::Epsilon>,
|
||
S::Alloc: OwnedAllocator<N, D, U1, S>,
|
||
N::Epsilon: Copy {
|
||
type Epsilon = N::Epsilon;
|
||
|
||
#[inline]
|
||
fn default_epsilon() -> Self::Epsilon {
|
||
N::default_epsilon()
|
||
}
|
||
|
||
#[inline]
|
||
fn default_max_relative() -> Self::Epsilon {
|
||
N::default_max_relative()
|
||
}
|
||
|
||
#[inline]
|
||
fn default_max_ulps() -> u32 {
|
||
N::default_max_ulps()
|
||
}
|
||
|
||
#[inline]
|
||
fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
|
||
self.translation.relative_eq(&other.translation, epsilon, max_relative) &&
|
||
self.rotation.relative_eq(&other.rotation, epsilon, max_relative)
|
||
}
|
||
|
||
#[inline]
|
||
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
|
||
self.translation.ulps_eq(&other.translation, epsilon, max_ulps) &&
|
||
self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
|
||
}
|
||
}
|
||
|
||
/*
|
||
*
|
||
* Display
|
||
*
|
||
*/
|
||
impl<N, D: DimName, S, R> fmt::Display for IsometryBase<N, D, S, R>
|
||
where N: Real + fmt::Display,
|
||
S: OwnedStorage<N, D, U1>,
|
||
R: fmt::Display,
|
||
S::Alloc: OwnedAllocator<N, D, U1, S> + Allocator<usize, D, U1> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
let precision = f.precision().unwrap_or(3);
|
||
|
||
try!(writeln!(f, "IsometryBase {{"));
|
||
try!(write!(f, "{:.*}", precision, self.translation));
|
||
try!(write!(f, "{:.*}", precision, self.rotation));
|
||
writeln!(f, "}}")
|
||
}
|
||
}
|
||
|
||
|
||
// /*
|
||
// *
|
||
// * Absolute
|
||
// *
|
||
// */
|
||
// impl<N: Absolute> Absolute for $t<N> {
|
||
// type AbsoluteValue = $submatrix<N::AbsoluteValue>;
|
||
//
|
||
// #[inline]
|
||
// fn abs(m: &$t<N>) -> $submatrix<N::AbsoluteValue> {
|
||
// Absolute::abs(&m.submatrix)
|
||
// }
|
||
// }
|