nalgebra/src/linalg/svd.rs

531 lines
20 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use num_complex::Complex;
use std::ops::MulAssign;
use alga::general::Real;
use core::{Matrix, MatrixMN, VectorN, DefaultAllocator, Matrix2x3, Vector2};
use dimension::{Dim, DimMin, DimMinimum, DimSub, DimDiff, U1, U2};
use storage::Storage;
use allocator::Allocator;
use constraint::{ShapeConstraint, SameNumberOfRows};
use linalg::givens;
use linalg::symmetric_eigen;
use linalg::Bidiagonal;
use geometry::UnitComplex;
/// The Singular Value Decomposition of a real matrix.
#[derive(Clone)]
pub struct SVD<N: Real, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, DimMinimum<R, C>, C> +
Allocator<N, R, DimMinimum<R, C>> +
Allocator<N, DimMinimum<R, C>> {
/// The left-singular vectors `U` of this SVD.
pub u: Option<MatrixMN<N, R, DimMinimum<R, C>>>,
/// The right-singular vectors `V^t` of this SVD.
pub v_t: Option<MatrixMN<N, DimMinimum<R, C>, C>>,
/// The singular values of this SVD.
pub singular_values: VectorN<N, DimMinimum<R, C>>,
}
impl<N: Real, R: DimMin<C>, C: Dim> SVD<N, R, C>
where DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
DefaultAllocator: Allocator<N, R, C> +
Allocator<N, C> + // for Bidiagonal
Allocator<N, R> + // for Bidiagonal
Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + // for Bidiagonal
Allocator<N, DimMinimum<R, C>, C> +
Allocator<N, R, DimMinimum<R, C>> +
Allocator<N, DimMinimum<R, C>> {
/// Computes the Singular Value Decomposition of `matrix` using implicit shift.
pub fn new(matrix: MatrixMN<N, R, C>, compute_u: bool, compute_v: bool) -> Self {
Self::try_new(matrix, compute_u, compute_v, N::default_epsilon(), 0).unwrap()
}
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
///
/// # Arguments
///
/// * `compute_u` set this to `true` to enable the computation of left-singular vectors.
/// * `compute_v` set this to `true` to enable the computation of left-singular vectors.
/// * `eps` tolerence used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_new(mut matrix: MatrixMN<N, R, C>,
compute_u: bool,
compute_v: bool,
eps: N,
max_niter: usize)
-> Option<Self> {
assert!(matrix.len() != 0, "Cannot compute the SVD of an empty matrix.");
let (nrows, ncols) = matrix.data.shape();
let min_nrows_ncols = nrows.min(ncols);
let dim = min_nrows_ncols.value();
let m_amax = matrix.amax();
if !m_amax.is_zero() {
matrix /= m_amax;
}
let mut b = Bidiagonal::new(matrix);
let mut u = if compute_u { Some(b.u()) } else { None };
let mut v_t = if compute_v { Some(b.v_t()) } else { None };
let mut niter = 0;
let (mut start, mut end) = Self::delimit_subproblem(&mut b, &mut u, &mut v_t, dim - 1, eps);
while end != start {
let subdim = end - start + 1;
// Solve the subproblem.
if subdim > 2 {
let m = end - 1;
let n = end;
let mut vec;
{
let dm = b.diagonal[m];
let dn = b.diagonal[n];
let fm = b.off_diagonal[m];
let tmm = dm * dm + b.off_diagonal[m - 1] * b.off_diagonal[m - 1];
let tmn = dm * fm;
let tnn = dn * dn + fm * fm;
let shift = symmetric_eigen::wilkinson_shift(tmm, tnn, tmn);
vec = Vector2::new(b.diagonal[start] * b.diagonal[start] - shift,
b.diagonal[start] * b.off_diagonal[start]);
}
for k in start .. n {
let m12 = if k == n - 1 { N::zero() } else { b.off_diagonal[k + 1] };
let mut subm = Matrix2x3::new(
b.diagonal[k], b.off_diagonal[k], N::zero(),
N::zero(), b.diagonal[k + 1], m12);
if let Some((rot1, norm1)) = givens::cancel_y(&vec) {
rot1.conjugate().rotate_rows(&mut subm.fixed_columns_mut::<U2>(0));
if k > start {
// This is not the first iteration.
b.off_diagonal[k - 1] = norm1;
}
let v = Vector2::new(subm[(0, 0)], subm[(1, 0)]);
// FIXME: does the case `v.y == 0` ever happen?
let (rot2, norm2) = givens::cancel_y(&v).unwrap_or((UnitComplex::identity(), subm[(0, 0)]));
rot2.rotate(&mut subm.fixed_columns_mut::<U2>(1));
subm[(0, 0)] = norm2;
if let Some(ref mut v_t) = v_t {
if b.is_upper_diagonal() {
rot1.rotate(&mut v_t.fixed_rows_mut::<U2>(k));
}
else {
rot2.rotate(&mut v_t.fixed_rows_mut::<U2>(k));
}
}
if let Some(ref mut u) = u {
if b.is_upper_diagonal() {
rot2.inverse().rotate_rows(&mut u.fixed_columns_mut::<U2>(k));
}
else {
rot1.inverse().rotate_rows(&mut u.fixed_columns_mut::<U2>(k));
}
}
b.diagonal[k + 0] = subm[(0, 0)];
b.diagonal[k + 1] = subm[(1, 1)];
b.off_diagonal[k + 0] = subm[(0, 1)];
if k != n - 1 {
b.off_diagonal[k + 1] = subm[(1, 2)];
}
vec.x = subm[(0, 1)];
vec.y = subm[(0, 2)];
}
else {
break;
}
}
}
else if subdim == 2 {
// Solve the remaining 2x2 subproblem.
let (u2, s, v2) = Self::compute_2x2_uptrig_svd(
b.diagonal[start], b.off_diagonal[start], b.diagonal[start + 1],
compute_u && b.is_upper_diagonal() || compute_v && !b.is_upper_diagonal(),
compute_v && b.is_upper_diagonal() || compute_u && !b.is_upper_diagonal());
b.diagonal[start + 0] = s[0];
b.diagonal[start + 1] = s[1];
b.off_diagonal[start] = N::zero();
if let Some(ref mut u) = u {
let rot = if b.is_upper_diagonal() { u2.unwrap() } else { v2.unwrap() };
rot.rotate_rows(&mut u.fixed_columns_mut::<U2>(start));
}
if let Some(ref mut v_t) = v_t {
let rot = if b.is_upper_diagonal() { v2.unwrap() } else { u2.unwrap() };
rot.inverse().rotate(&mut v_t.fixed_rows_mut::<U2>(start));
}
end -= 1;
}
// Re-delimit the suproblem in case some decoupling occured.
let sub = Self::delimit_subproblem(&mut b, &mut u, &mut v_t, end, eps);
start = sub.0;
end = sub.1;
niter += 1;
if niter == max_niter {
return None;
}
}
b.diagonal *= m_amax;
// Ensure all singular value are non-negative.
for i in 0 .. dim {
let sval = b.diagonal[i];
if sval < N::zero() {
b.diagonal[i] = -sval;
if let Some(ref mut u) = u {
u.column_mut(i).neg_mut();
}
}
}
Some(SVD { u: u, v_t: v_t, singular_values: b.diagonal })
}
// Explicit formulaes inspired from the paper "Computing the Singular Values of 2-by-2 Complex
// Matrices", Sanzheng Qiao and Xiaohong Wang.
// http://www.cas.mcmaster.ca/sqrl/papers/sqrl5.pdf
fn compute_2x2_uptrig_svd(m11: N, m12: N, m22: N, compute_u: bool, compute_v: bool)
-> (Option<UnitComplex<N>>, Vector2<N>, Option<UnitComplex<N>>) {
let two: N = ::convert(2.0f64);
let half: N = ::convert(0.5f64);
let denom = (m11 + m22).hypot(m12) + (m11 - m22).hypot(m12);
// NOTE: v1 is the singular value that is the closest to m22.
// This prevents cancellation issues when constructing the vector `csv` bellow. If we chose
// otherwise, we would have v1 ~= m11 when m12 is small. This would cause catastrofic
// cancellation on `v1 * v1 - m11 * m11` bellow.
let v1 = two * m11 * m22 / denom;
let v2 = half * denom;
let mut u = None;
let mut v_t = None;
if compute_u || compute_v {
let csv = Vector2::new(m11 * m12, v1 * v1 - m11 * m11).normalize();
if compute_v {
v_t = Some(UnitComplex::new_unchecked(Complex::new(csv.x, csv.y)));
}
if compute_u {
let cu = (m11 * csv.x + m12 * csv.y) / v1;
let su = (m22 * csv.y) / v1;
u = Some(UnitComplex::new_unchecked(Complex::new(cu, su)));
}
}
(u, Vector2::new(v1, v2), v_t)
}
/*
fn display_bidiag(b: &Bidiagonal<N, R, C>, begin: usize, end: usize) {
for i in begin .. end {
for k in begin .. i {
print!(" ");
}
println!("{} {}", b.diagonal[i], b.off_diagonal[i]);
}
for k in begin .. end {
print!(" ");
}
println!("{}", b.diagonal[end]);
}
*/
fn delimit_subproblem(b: &mut Bidiagonal<N, R, C>,
u: &mut Option<MatrixMN<N, R, DimMinimum<R, C>>>,
v_t: &mut Option<MatrixMN<N, DimMinimum<R, C>, C>>,
end: usize,
eps: N)
-> (usize, usize) {
let mut n = end;
while n > 0 {
let m = n - 1;
if b.off_diagonal[m].is_zero() ||
b.off_diagonal[m].abs() <= eps * (b.diagonal[n].abs() + b.diagonal[m].abs()) {
b.off_diagonal[m] = N::zero();
}
else if b.diagonal[m].abs() <= eps {
b.diagonal[m] = N::zero();
Self::cancel_horizontal_off_diagonal_elt(b, u, v_t, m, m + 1);
if m != 0 {
Self::cancel_vertical_off_diagonal_elt(b, u, v_t, m - 1);
}
}
else if b.diagonal[n].abs() <= eps {
b.diagonal[n] = N::zero();
Self::cancel_vertical_off_diagonal_elt(b, u, v_t, m);
}
else {
break;
}
n -= 1;
}
if n == 0 {
return (0, 0);
}
let mut new_start = n - 1;
while new_start > 0 {
let m = new_start - 1;
if b.off_diagonal[m].abs() <= eps * (b.diagonal[new_start].abs() + b.diagonal[m].abs()) {
b.off_diagonal[m] = N::zero();
break;
}
// FIXME: write a test that enters this case.
else if b.diagonal[m].abs() <= eps {
b.diagonal[m] = N::zero();
Self::cancel_horizontal_off_diagonal_elt(b, u, v_t, m, n);
if m != 0 {
Self::cancel_vertical_off_diagonal_elt(b, u, v_t, m - 1);
}
break;
}
new_start -= 1;
}
(new_start, n)
}
// Cancels the i-th off-diagonal element using givens rotations.
fn cancel_horizontal_off_diagonal_elt(b: &mut Bidiagonal<N, R, C>,
u: &mut Option<MatrixMN<N, R, DimMinimum<R, C>>>,
v_t: &mut Option<MatrixMN<N, DimMinimum<R, C>, C>>,
i: usize,
end: usize) {
let mut v = Vector2::new(b.off_diagonal[i], b.diagonal[i + 1]);
b.off_diagonal[i] = N::zero();
for k in i .. end {
if let Some((rot, norm)) = givens::cancel_x(&v) {
b.diagonal[k + 1] = norm;
if b.is_upper_diagonal() {
if let Some(ref mut u) = *u {
rot.inverse().rotate_rows(&mut u.fixed_columns_with_step_mut::<U2>(i, k - i + 1));
}
}
else if let Some(ref mut v_t) = *v_t {
rot.rotate(&mut v_t.fixed_rows_with_step_mut::<U2>(i, k - i + 1));
}
if k + 1 != end {
v.x = -rot.sin_angle() * b.off_diagonal[k + 1];
v.y = b.diagonal[k + 2];
b.off_diagonal[k + 1] *= rot.cos_angle();
}
}
else {
break;
}
}
}
// Cancels the i-th off-diagonal element using givens rotations.
fn cancel_vertical_off_diagonal_elt(b: &mut Bidiagonal<N, R, C>,
u: &mut Option<MatrixMN<N, R, DimMinimum<R, C>>>,
v_t: &mut Option<MatrixMN<N, DimMinimum<R, C>, C>>,
i: usize) {
let mut v = Vector2::new(b.diagonal[i], b.off_diagonal[i]);
b.off_diagonal[i] = N::zero();
for k in (0 .. i + 1).rev() {
if let Some((rot, norm)) = givens::cancel_y(&v) {
b.diagonal[k] = norm;
if b.is_upper_diagonal() {
if let Some(ref mut v_t) = *v_t {
rot.rotate(&mut v_t.fixed_rows_with_step_mut::<U2>(k, i + 1 - k));
}
}
else if let Some(ref mut u) = *u {
rot.inverse().rotate_rows(&mut u.fixed_columns_with_step_mut::<U2>(k, i + 1 - k));
}
if k > 0 {
v.x = b.diagonal[k - 1];
v.y = rot.sin_angle() * b.off_diagonal[k - 1];
b.off_diagonal[k - 1] *= rot.cos_angle();
}
}
else {
break;
}
}
}
/// Computes the rank of the decomposed matrix, i.e., the number of singular values greater
/// than `eps`.
pub fn rank(&self, eps: N) -> usize {
assert!(eps >= N::zero(), "SVD rank: the epsilon must be non-negative.");
self.singular_values.iter().filter(|e| **e > eps).count()
}
/// Rebuild the original matrix.
///
/// This is useful if some of the singular values have been manually modified. Panics if the
/// right- and left- singular vectors have not been computed at construction-time.
pub fn recompose(self) -> MatrixMN<N, R, C> {
let mut u = self.u.expect("SVD recomposition: U has not been computed.");
let v_t = self.v_t.expect("SVD recomposition: V^t has not been computed.");
for i in 0 .. self.singular_values.len() {
let val = self.singular_values[i];
u.column_mut(i).mul_assign(val);
}
u * v_t
}
/// Computes the pseudo-inverse of the decomposed matrix.
///
/// Any singular value smaller than `eps` is assumed to be zero.
/// Panics if the right- and left- singular vectors have not been computed at
/// construction-time.
pub fn pseudo_inverse(mut self, eps: N) -> MatrixMN<N, C, R>
where DefaultAllocator: Allocator<N, C, R> {
assert!(eps >= N::zero(), "SVD pseudo inverse: the epsilon must be non-negative.");
for i in 0 .. self.singular_values.len() {
let val = self.singular_values[i];
if val > eps {
self.singular_values[i] = N::one() / val;
}
else {
self.singular_values[i] = N::zero();
}
}
self.recompose().transpose()
}
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
///
/// Any singular value smaller than `eps` is assumed to be zero.
/// Returns `None` if the singular vectors `U` and `V` have not been computed.
// FIXME: make this more generic wrt the storage types and the dimensions for `b`.
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>, eps: N) -> MatrixMN<N, C, C2>
where S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, C, C2> +
Allocator<N, DimMinimum<R, C>, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> {
assert!(eps >= N::zero(), "SVD solve: the epsilon must be non-negative.");
let u = self.u.as_ref().expect("SVD solve: U has not been computed.");
let v_t = self.v_t.as_ref().expect("SVD solve: V^t has not been computed.");
let mut ut_b = u.tr_mul(b);
for j in 0 .. ut_b.ncols() {
let mut col = ut_b.column_mut(j);
for i in 0 .. self.singular_values.len() {
let val = self.singular_values[i];
if val > eps {
col[i] /= val;
}
else {
col[i] = N::zero();
}
}
}
v_t.tr_mul(&ut_b)
}
}
impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
where DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
DefaultAllocator: Allocator<N, R, C> +
Allocator<N, C> + // for Bidiagonal
Allocator<N, R> + // for Bidiagonal
Allocator<N, DimDiff<DimMinimum<R, C>, U1>> + // for Bidiagonal
Allocator<N, DimMinimum<R, C>, C> +
Allocator<N, R, DimMinimum<R, C>> +
Allocator<N, DimMinimum<R, C>> {
/// Computes the Singular Value Decomposition using implicit shift.
pub fn svd(self, compute_u: bool, compute_v: bool) -> SVD<N, R, C> {
SVD::new(self.into_owned(), compute_u, compute_v)
}
/// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
///
/// # Arguments
///
/// * `compute_u` set this to `true` to enable the computation of left-singular vectors.
/// * `compute_v` set this to `true` to enable the computation of left-singular vectors.
/// * `eps` tolerence used to determine when a value converged to 0.
/// * `max_niter` maximum total number of iterations performed by the algorithm. If this
/// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
/// continues indefinitely until convergence.
pub fn try_svd(self, compute_u: bool, compute_v: bool, eps: N, max_niter: usize) -> Option<SVD<N, R, C>> {
SVD::try_new(self.into_owned(), compute_u, compute_v, eps, max_niter)
}
/// Computes the singular values of this matrix.
pub fn singular_values(&self) -> VectorN<N, DimMinimum<R, C>> {
SVD::new(self.clone_owned(), false, false).singular_values
}
/// Computes the rank of this matrix.
///
/// All singular values bellow `eps` are considered equal to 0.
pub fn rank(&self, eps: N) -> usize {
let svd = SVD::new(self.clone_owned(), false, false);
svd.rank(eps)
}
/// Computes the pseudo-inverse of this matrix.
///
/// All singular values bellow `eps` are considered equal to 0.
pub fn pseudo_inverse(self, eps: N) -> MatrixMN<N, C, R>
where DefaultAllocator: Allocator<N, C, R> {
SVD::new(self.clone_owned(), true, true).pseudo_inverse(eps)
}
}