nalgebra/src/geometry/rotation_specialization.rs
2017-08-15 19:07:18 +02:00

352 lines
12 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
#[cfg(feature = "arbitrary")]
use core::storage::Owned;
use std::ops::Neg;
use num::Zero;
use rand::{Rand, Rng};
use alga::general::Real;
use core::{Unit, Vector, MatrixN, VectorN, Vector3};
use core::dimension::{U1, U2, U3};
use core::storage::Storage;
use geometry::{UnitComplex, Rotation2, Rotation3};
/*
*
* 2D Rotation matrix.
*
*/
impl<N: Real> Rotation2<N> {
/// Builds a 2 dimensional rotation matrix from an angle in radian.
pub fn new(angle: N) -> Self {
let (sia, coa) = angle.sin_cos();
Self::from_matrix_unchecked(MatrixN::<N, U2>::new(coa, -sia, sia, coa))
}
/// Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.
///
/// Equivalent to `Self::new(axisangle[0])`.
#[inline]
pub fn from_scaled_axis<SB: Storage<N, U1>>(axisangle: Vector<N, U1, SB>) -> Self {
Self::new(axisangle[0])
}
/// The rotation matrix required to align `a` and `b` but with its angl.
///
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<N, U2, SB>, b: &Vector<N, U2, SC>) -> Self
where SB: Storage<N, U2>,
SC: Storage<N, U2> {
::convert(UnitComplex::rotation_between(a, b).to_rotation_matrix())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
#[inline]
pub fn scaled_rotation_between<SB, SC>(a: &Vector<N, U2, SB>, b: &Vector<N, U2, SC>, s: N) -> Self
where SB: Storage<N, U2>,
SC: Storage<N, U2> {
::convert(UnitComplex::scaled_rotation_between(a, b, s).to_rotation_matrix())
}
}
impl<N: Real> Rotation2<N> {
/// The rotation angle.
#[inline]
pub fn angle(&self) -> N {
self.matrix()[(1, 0)].atan2(self.matrix()[(0, 0)])
}
/// The rotation angle needed to make `self` and `other` coincide.
#[inline]
pub fn angle_to(&self, other: &Rotation2<N>) -> N {
self.rotation_to(other).angle()
}
/// The rotation matrix needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
#[inline]
pub fn rotation_to(&self, other: &Rotation2<N>) -> Rotation2<N> {
other * self.inverse()
}
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the angle
/// of `self` multiplied by `n`.
#[inline]
pub fn powf(&self, n: N) -> Rotation2<N> {
Self::new(self.angle() * n)
}
/// The rotation angle returned as a 1-dimensional vector.
#[inline]
pub fn scaled_axis(&self) -> VectorN<N, U1> {
Vector::<_, U1, _>::new(self.angle())
}
}
impl<N: Real + Rand> Rand for Rotation2<N> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Self {
Self::new(rng.gen())
}
}
#[cfg(feature="arbitrary")]
impl<N: Real + Arbitrary> Arbitrary for Rotation2<N>
where Owned<N, U2, U2>: Send {
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
Self::new(N::arbitrary(g))
}
}
/*
*
* 3D Rotation matrix.
*
*/
impl<N: Real> Rotation3<N> {
/// Builds a 3 dimensional rotation matrix from an axis and an angle.
///
/// # Arguments
/// * `axisangle` - A vector representing the rotation. Its magnitude is the amount of rotation
/// in radian. Its direction is the axis of rotation.
pub fn new<SB: Storage<N, U3>>(axisangle: Vector<N, U3, SB>) -> Self {
let axisangle = axisangle.into_owned();
let (axis, angle) = Unit::new_and_get(axisangle);
Self::from_axis_angle(&axis, angle)
}
/// Builds a 3D rotation matrix from an axis scaled by the rotation angle.
pub fn from_scaled_axis<SB: Storage<N, U3>>(axisangle: Vector<N, U3, SB>) -> Self {
Self::new(axisangle)
}
/// Builds a 3D rotation matrix from an axis and a rotation angle.
pub fn from_axis_angle<SB>(axis: &Unit<Vector<N, U3, SB>>, angle: N) -> Self
where SB: Storage<N, U3> {
if angle.is_zero() {
Self::identity()
}
else {
let ux = axis.as_ref()[0];
let uy = axis.as_ref()[1];
let uz = axis.as_ref()[2];
let sqx = ux * ux;
let sqy = uy * uy;
let sqz = uz * uz;
let (sin, cos) = angle.sin_cos();
let one_m_cos = N::one() - cos;
Self::from_matrix_unchecked(
MatrixN::<N, U3>::new(
(sqx + (N::one() - sqx) * cos),
(ux * uy * one_m_cos - uz * sin),
(ux * uz * one_m_cos + uy * sin),
(ux * uy * one_m_cos + uz * sin),
(sqy + (N::one() - sqy) * cos),
(uy * uz * one_m_cos - ux * sin),
(ux * uz * one_m_cos - uy * sin),
(uy * uz * one_m_cos + ux * sin),
(sqz + (N::one() - sqz) * cos)))
}
}
/// Creates a new rotation from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self {
let (sr, cr) = roll.sin_cos();
let (sp, cp) = pitch.sin_cos();
let (sy, cy) = yaw.sin_cos();
Self::from_matrix_unchecked(
MatrixN::<N, U3>::new(
cy * cp, cy * sp * sr - sy * cr, cy * sp * cr + sy * sr,
sy * cp, sy * sp * sr + cy * cr, sy * sp * cr - cy * sr,
-sp, cp * sr, cp * cr)
)
}
/// Creates a rotation that corresponds to the local frame of an observer standing at the
/// origin and looking toward `dir`.
///
/// It maps the view direction `dir` to the positive `z` axis.
///
/// # Arguments
/// * dir - The look direction, that is, direction the matrix `z` axis will be aligned with.
/// * up - The vertical direction. The only requirement of this parameter is to not be
/// collinear
/// to `dir`. Non-collinearity is not checked.
#[inline]
pub fn new_observer_frame<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
where SB: Storage<N, U3>,
SC: Storage<N, U3> {
let zaxis = dir.normalize();
let xaxis = up.cross(&zaxis).normalize();
let yaxis = zaxis.cross(&xaxis).normalize();
Self::from_matrix_unchecked(MatrixN::<N, U3>::new(
xaxis.x, yaxis.x, zaxis.x,
xaxis.y, yaxis.y, zaxis.y,
xaxis.z, yaxis.z, zaxis.z))
}
/// Builds a right-handed look-at view matrix without translation.
///
/// This conforms to the common notion of right handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_rh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
where SB: Storage<N, U3>,
SC: Storage<N, U3> {
Self::new_observer_frame(&dir.neg(), up).inverse()
}
/// Builds a left-handed look-at view matrix without translation.
///
/// This conforms to the common notion of left handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * eye - The eye position.
/// * target - The target position.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `target - eye`.
#[inline]
pub fn look_at_lh<SB, SC>(dir: &Vector<N, U3, SB>, up: &Vector<N, U3, SC>) -> Self
where SB: Storage<N, U3>,
SC: Storage<N, U3> {
Self::new_observer_frame(dir, up).inverse()
}
/// The rotation matrix required to align `a` and `b` but with its angl.
///
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<N, U3, SB>, b: &Vector<N, U3, SC>) -> Option<Self>
where SB: Storage<N, U3>,
SC: Storage<N, U3> {
Self::scaled_rotation_between(a, b, N::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
#[inline]
pub fn scaled_rotation_between<SB, SC>(a: &Vector<N, U3, SB>, b: &Vector<N, U3, SC>, n: N)
-> Option<Self>
where SB: Storage<N, U3>,
SC: Storage<N, U3> {
// FIXME: code duplication with Rotation.
if let (Some(na), Some(nb)) = (a.try_normalize(N::zero()), b.try_normalize(N::zero())) {
let c = na.cross(&nb);
if let Some(axis) = Unit::try_new(c, N::default_epsilon()) {
return Some(Self::from_axis_angle(&axis, na.dot(&nb).acos() * n))
}
// Zero or PI.
if na.dot(&nb) < N::zero() {
// PI
//
// The rotation axis is undefined but the angle not zero. This is not a
// simple rotation.
return None;
}
}
Some(Self::identity())
}
/// The rotation angle.
#[inline]
pub fn angle(&self) -> N {
((self.matrix()[(0, 0)] + self.matrix()[(1, 1)] + self.matrix()[(2, 2)] - N::one()) / ::convert(2.0)).acos()
}
/// The rotation axis. Returns `None` if the rotation angle is zero or PI.
#[inline]
pub fn axis(&self) -> Option<Unit<Vector3<N>>> {
let axis = VectorN::<N, U3>::new(
self.matrix()[(2, 1)] - self.matrix()[(1, 2)],
self.matrix()[(0, 2)] - self.matrix()[(2, 0)],
self.matrix()[(1, 0)] - self.matrix()[(0, 1)]);
Unit::try_new(axis, N::default_epsilon())
}
/// The rotation axis multiplied by the rotation angle.
#[inline]
pub fn scaled_axis(&self) -> Vector3<N> {
if let Some(axis) = self.axis() {
axis.unwrap() * self.angle()
}
else {
Vector::zero()
}
}
/// The rotation angle needed to make `self` and `other` coincide.
#[inline]
pub fn angle_to(&self, other: &Rotation3<N>) -> N {
self.rotation_to(other).angle()
}
/// The rotation matrix needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
#[inline]
pub fn rotation_to(&self, other: &Rotation3<N>) -> Rotation3<N> {
other * self.inverse()
}
/// Raise the quaternion to a given floating power, i.e., returns the rotation with the same
/// axis as `self` and an angle equal to `self.angle()` multiplied by `n`.
#[inline]
pub fn powf(&self, n: N) -> Rotation3<N> {
if let Some(axis) = self.axis() {
Self::from_axis_angle(&axis, self.angle() * n)
}
else if self.matrix()[(0, 0)] < N::zero() {
let minus_id = MatrixN::<N, U3>::from_diagonal_element(-N::one());
Self::from_matrix_unchecked(minus_id)
}
else {
Self::identity()
}
}
}
impl<N: Real + Rand> Rand for Rotation3<N> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Self {
Self::new(VectorN::rand(rng))
}
}
#[cfg(feature="arbitrary")]
impl<N: Real + Arbitrary> Arbitrary for Rotation3<N>
where Owned<N, U3, U3>: Send,
Owned<N, U3>: Send {
#[inline]
fn arbitrary<G: Gen>(g: &mut G) -> Self {
Self::new(VectorN::arbitrary(g))
}
}