nalgebra/src/dmat.rs

358 lines
9.0 KiB
Rust

use std::rand::Rand;
use std::rand;
use std::num::{One, Zero};
use std::vec;
use std::cmp::ApproxEq;
use std::util;
use traits::inv::Inv;
use traits::transpose::Transpose;
use traits::rlmul::{RMul, LMul};
use dvec::DVec;
/// Matrix with dimensions unknown at compile-time.
#[deriving(Eq, ToStr, Clone)]
pub struct DMat<N> {
priv nrows: uint,
priv ncols: uint,
priv mij: ~[N]
}
impl<N> DMat<N> {
/// Creates an uninitialized matrix.
#[inline]
pub unsafe fn new_uninitialized(nrows: uint, ncols: uint) -> DMat<N> {
let mut vec = vec::with_capacity(nrows * ncols);
vec::raw::set_len(&mut vec, nrows * ncols);
DMat {
nrows: nrows,
ncols: ncols,
mij: vec
}
}
}
impl<N: Zero + Clone> DMat<N> {
/// Builds a matrix filled with zeros.
///
/// # Arguments
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
/// components.
#[inline]
pub fn new_zeros(nrows: uint, ncols: uint) -> DMat<N> {
DMat::from_elem(nrows, ncols, Zero::zero())
}
/// Tests if all components of the matrix are zeroes.
#[inline]
pub fn is_zero(&self) -> bool {
self.mij.iter().all(|e| e.is_zero())
}
}
impl<N: Rand> DMat<N> {
/// Builds a matrix filled with random values.
#[inline]
pub fn new_random(nrows: uint, ncols: uint) -> DMat<N> {
DMat::from_fn(nrows, ncols, |_, _| rand::random())
}
}
impl<N: One + Clone> DMat<N> {
/// Builds a matrix filled with a given constant.
#[inline]
pub fn new_ones(nrows: uint, ncols: uint) -> DMat<N> {
DMat::from_elem(nrows, ncols, One::one())
}
}
impl<N: Clone> DMat<N> {
/// Builds a matrix filled with a given constant.
#[inline]
pub fn from_elem(nrows: uint, ncols: uint, val: N) -> DMat<N> {
DMat {
nrows: nrows,
ncols: ncols,
mij: vec::from_elem(nrows * ncols, val)
}
}
}
impl<N> DMat<N> {
/// Builds a matrix filled with a given constant.
#[inline(always)]
pub fn from_fn(nrows: uint, ncols: uint, f: &fn(uint, uint) -> N) -> DMat<N> {
DMat {
nrows: nrows,
ncols: ncols,
mij: vec::from_fn(nrows * ncols, |i| { let m = i % ncols; f(m, m - i * ncols) })
}
}
/// The number of row on the matrix.
pub fn nrows(&self) -> uint {
self.nrows
}
/// The number of columns on the matrix.
pub fn ncols(&self) -> uint {
self.ncols
}
}
// FIXME: add a function to modify the dimension (to avoid useless allocations)?
impl<N: One + Zero + Clone> DMat<N> {
/// Builds an identity matrix.
///
/// # Arguments
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
/// components.
#[inline]
pub fn new_identity(dim: uint) -> DMat<N> {
let mut res = DMat::new_zeros(dim, dim);
for i in range(0u, dim) {
let _1: N = One::one();
res.set(i, i, _1);
}
res
}
}
impl<N: Clone> DMat<N> {
#[inline]
fn offset(&self, i: uint, j: uint) -> uint {
i * self.ncols + j
}
/// Changes the value of a component of the matrix.
///
/// # Arguments
/// * `row` - 0-based index of the line to be changed
/// * `col` - 0-based index of the column to be changed
#[inline]
pub fn set(&mut self, row: uint, col: uint, val: N) {
assert!(row < self.nrows);
assert!(col < self.ncols);
self.mij[self.offset(row, col)] = val
}
/// Reads the value of a component of the matrix.
///
/// # Arguments
/// * `row` - 0-based index of the line to be read
/// * `col` - 0-based index of the column to be read
#[inline]
pub fn at(&self, row: uint, col: uint) -> N {
assert!(row < self.nrows);
assert!(col < self.ncols);
self.mij[self.offset(row, col)].clone()
}
}
impl<N: Clone + Mul<N, N> + Add<N, N> + Zero> Mul<DMat<N>, DMat<N>> for DMat<N> {
fn mul(&self, other: &DMat<N>) -> DMat<N> {
assert!(self.ncols == other.nrows);
let mut res = unsafe { DMat::new_uninitialized(self.nrows, other.ncols) };
for i in range(0u, self.nrows) {
for j in range(0u, other.ncols) {
let mut acc: N = Zero::zero();
for k in range(0u, self.ncols) {
acc = acc + self.at(i, k) * other.at(k, j);
}
res.set(i, j, acc);
}
}
res
}
}
impl<N: Clone + Add<N, N> + Mul<N, N> + Zero>
RMul<DVec<N>> for DMat<N> {
fn rmul(&self, other: &DVec<N>) -> DVec<N> {
assert!(self.ncols == other.at.len());
let mut res : DVec<N> = unsafe { DVec::new_uninitialized(self.nrows) };
for i in range(0u, self.nrows) {
let mut acc: N = Zero::zero();
for j in range(0u, self.ncols) {
acc = acc + other.at[j] * self.at(i, j);
}
res.at[i] = acc;
}
res
}
}
impl<N: Clone + Add<N, N> + Mul<N, N> + Zero>
LMul<DVec<N>> for DMat<N> {
fn lmul(&self, other: &DVec<N>) -> DVec<N> {
assert!(self.nrows == other.at.len());
let mut res : DVec<N> = unsafe { DVec::new_uninitialized(self.ncols) };
for i in range(0u, self.ncols) {
let mut acc: N = Zero::zero();
for j in range(0u, self.nrows) {
acc = acc + other.at[j] * self.at(j, i);
}
res.at[i] = acc;
}
res
}
}
impl<N: Clone + Num>
Inv for DMat<N> {
#[inline]
fn inverse(&self) -> Option<DMat<N>> {
let mut res : DMat<N> = self.clone();
if res.inplace_inverse() {
Some(res)
}
else {
None
}
}
fn inplace_inverse(&mut self) -> bool {
assert!(self.nrows == self.ncols);
let dim = self.nrows;
let mut res: DMat<N> = DMat::new_identity(dim);
let _0T: N = Zero::zero();
// inversion using Gauss-Jordan elimination
for k in range(0u, dim) {
// search a non-zero value on the k-th column
// FIXME: would it be worth it to spend some more time searching for the
// max instead?
let mut n0 = k; // index of a non-zero entry
while (n0 != dim) {
if self.at(n0, k) != _0T {
break;
}
n0 = n0 + 1;
}
if n0 == dim {
return false
}
// swap pivot line
if n0 != k {
for j in range(0u, dim) {
let off_n0_j = self.offset(n0, j);
let off_k_j = self.offset(k, j);
self.mij.swap(off_n0_j, off_k_j);
res.mij.swap(off_n0_j, off_k_j);
}
}
let pivot = self.at(k, k);
for j in range(k, dim) {
let selfval = self.at(k, j) / pivot;
self.set(k, j, selfval);
}
for j in range(0u, dim) {
let resval = res.at(k, j) / pivot;
res.set(k, j, resval);
}
for l in range(0u, dim) {
if l != k {
let normalizer = self.at(l, k);
for j in range(k, dim) {
let selfval = self.at(l, j) - self.at(k, j) * normalizer;
self.set(l, j, selfval);
}
for j in range(0u, dim) {
let resval = res.at(l, j) - res.at(k, j) * normalizer;
res.set(l, j, resval);
}
}
}
}
*self = res;
true
}
}
impl<N: Clone> Transpose for DMat<N> {
#[inline]
fn transposed(&self) -> DMat<N> {
let mut res = self.clone();
res.transpose();
res
}
fn transpose(&mut self) {
for i in range(1u, self.nrows) {
for j in range(0u, self.ncols - 1) {
let off_i_j = self.offset(i, j);
let off_j_i = self.offset(j, i);
self.mij.swap(off_i_j, off_j_i);
}
}
util::swap(&mut self.nrows, &mut self.ncols);
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for DMat<N> {
#[inline]
fn approx_epsilon() -> N {
fail!("This function cannot work due to a compiler bug.")
// let res: N = ApproxEq::<N>::approx_epsilon();
// res
}
#[inline]
fn approx_eq(&self, other: &DMat<N>) -> bool {
let mut zip = self.mij.iter().zip(other.mij.iter());
do zip.all |(a, b)| {
a.approx_eq(b)
}
}
#[inline]
fn approx_eq_eps(&self, other: &DMat<N>, epsilon: &N) -> bool {
let mut zip = self.mij.iter().zip(other.mij.iter());
do zip.all |(a, b)| {
a.approx_eq_eps(b, epsilon)
}
}
}