nalgebra/src/dmat.rs
2013-08-11 16:07:34 +02:00

281 lines
7.0 KiB
Rust

use std::num::{One, Zero};
use std::vec::from_elem;
use std::cmp::ApproxEq;
use traits::inv::Inv;
use traits::division_ring::DivisionRing;
use traits::transpose::Transpose;
use traits::rlmul::{RMul, LMul};
use dvec::{DVec, zero_vec_with_dim};
/// Square matrix with a dimension unknown at compile-time.
#[deriving(Eq, ToStr, Clone)]
pub struct DMat<N> {
priv dim: uint, // FIXME: handle more than just square matrices
priv mij: ~[N]
}
/// Builds a matrix filled with zeros.
///
/// # Arguments
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
/// components.
#[inline]
pub fn zero_mat_with_dim<N: Zero + Clone>(dim: uint) -> DMat<N> {
DMat { dim: dim, mij: from_elem(dim * dim, Zero::zero()) }
}
/// Tests if all components of the matrix are zeroes.
#[inline]
pub fn is_zero_mat<N: Zero>(mat: &DMat<N>) -> bool {
mat.mij.iter().all(|e| e.is_zero())
}
/// Builds an identity matrix.
///
/// # Arguments
/// * `dim` - The dimension of the matrix. A `dim`-dimensional matrix contains `dim * dim`
/// components.
#[inline]
pub fn one_mat_with_dim<N: Clone + One + Zero>(dim: uint) -> DMat<N> {
let mut res = zero_mat_with_dim(dim);
let _1 = One::one::<N>();
for i in range(0u, dim) {
res.set(i, i, &_1);
}
res
}
impl<N: Clone> DMat<N> {
#[inline]
fn offset(&self, i: uint, j: uint) -> uint {
i * self.dim + j
}
/// Changes the value of a component of the matrix.
///
/// # Arguments
/// * `i` - 0-based index of the line to be changed
/// * `j` - 0-based index of the column to be changed
#[inline]
pub fn set(&mut self, i: uint, j: uint, t: &N) {
assert!(i < self.dim);
assert!(j < self.dim);
self.mij[self.offset(i, j)] = t.clone()
}
/// Reads the value of a component of the matrix.
///
/// # Arguments
/// * `i` - 0-based index of the line to be read
/// * `j` - 0-based index of the column to be read
#[inline]
pub fn at(&self, i: uint, j: uint) -> N {
assert!(i < self.dim);
assert!(j < self.dim);
self.mij[self.offset(i, j)].clone()
}
}
impl<N: Clone> Index<(uint, uint), N> for DMat<N> {
#[inline]
fn index(&self, &(i, j): &(uint, uint)) -> N {
self.at(i, j)
}
}
impl<N: Clone + Mul<N, N> + Add<N, N> + Zero>
Mul<DMat<N>, DMat<N>> for DMat<N> {
fn mul(&self, other: &DMat<N>) -> DMat<N> {
assert!(self.dim == other.dim);
let dim = self.dim;
let mut res = zero_mat_with_dim(dim);
for i in range(0u, dim) {
for j in range(0u, dim) {
let mut acc = Zero::zero::<N>();
for k in range(0u, dim) {
acc = acc + self.at(i, k) * other.at(k, j);
}
res.set(i, j, &acc);
}
}
res
}
}
impl<N: Clone + Add<N, N> + Mul<N, N> + Zero>
RMul<DVec<N>> for DMat<N> {
fn rmul(&self, other: &DVec<N>) -> DVec<N> {
assert!(self.dim == other.at.len());
let dim = self.dim;
let mut res : DVec<N> = zero_vec_with_dim(dim);
for i in range(0u, dim) {
for j in range(0u, dim) {
res.at[i] = res.at[i] + other.at[j] * self.at(i, j);
}
}
res
}
}
impl<N: Clone + Add<N, N> + Mul<N, N> + Zero>
LMul<DVec<N>> for DMat<N> {
fn lmul(&self, other: &DVec<N>) -> DVec<N> {
assert!(self.dim == other.at.len());
let dim = self.dim;
let mut res : DVec<N> = zero_vec_with_dim(dim);
for i in range(0u, dim) {
for j in range(0u, dim) {
res.at[i] = res.at[i] + other.at[j] * self.at(j, i);
}
}
res
}
}
impl<N: Clone + Eq + DivisionRing>
Inv for DMat<N> {
#[inline]
fn inverse(&self) -> Option<DMat<N>> {
let mut res : DMat<N> = self.clone();
if res.inplace_inverse() {
Some(res)
}
else {
None
}
}
fn inplace_inverse(&mut self) -> bool {
let dim = self.dim;
let mut res = one_mat_with_dim::<N>(dim);
let _0T = Zero::zero::<N>();
// inversion using Gauss-Jordan elimination
for k in range(0u, dim) {
// search a non-zero value on the k-th column
// FIXME: would it be worth it to spend some more time searching for the
// max instead?
let mut n0 = k; // index of a non-zero entry
while (n0 != dim) {
if self.at(n0, k) != _0T {
break;
}
n0 = n0 + 1;
}
if n0 == dim {
return false
}
// swap pivot line
if n0 != k {
for j in range(0u, dim) {
let off_n0_j = self.offset(n0, j);
let off_k_j = self.offset(k, j);
self.mij.swap(off_n0_j, off_k_j);
res.mij.swap(off_n0_j, off_k_j);
}
}
let pivot = self.at(k, k);
for j in range(k, dim) {
let selfval = &(self.at(k, j) / pivot);
self.set(k, j, selfval);
}
for j in range(0u, dim) {
let resval = &(res.at(k, j) / pivot);
res.set(k, j, resval);
}
for l in range(0u, dim) {
if l != k {
let normalizer = self.at(l, k);
for j in range(k, dim) {
let selfval = &(self.at(l, j) - self.at(k, j) * normalizer);
self.set(l, j, selfval);
}
for j in range(0u, dim) {
let resval = &(res.at(l, j) - res.at(k, j) * normalizer);
res.set(l, j, resval);
}
}
}
}
*self = res;
true
}
}
impl<N: Clone> Transpose for DMat<N> {
#[inline]
fn transposed(&self) -> DMat<N> {
let mut res = self.clone();
res.transpose();
res
}
fn transpose(&mut self) {
let dim = self.dim;
for i in range(1u, dim) {
for j in range(0u, dim - 1) {
let off_i_j = self.offset(i, j);
let off_j_i = self.offset(j, i);
self.mij.swap(off_i_j, off_j_i);
}
}
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for DMat<N> {
#[inline]
fn approx_epsilon() -> N {
ApproxEq::approx_epsilon::<N, N>()
}
#[inline]
fn approx_eq(&self, other: &DMat<N>) -> bool {
let mut zip = self.mij.iter().zip(other.mij.iter());
do zip.all |(a, b)| {
a.approx_eq(b)
}
}
#[inline]
fn approx_eq_eps(&self, other: &DMat<N>, epsilon: &N) -> bool {
let mut zip = self.mij.iter().zip(other.mij.iter());
do zip.all |(a, b)| {
a.approx_eq_eps(b, epsilon)
}
}
}