nalgebra/src/geometry/rotation_conversion.rs

247 lines
7.0 KiB
Rust

use num::Zero;
use alga::general::{Real, SubsetOf, SupersetOf};
use alga::linear::Rotation as AlgaRotation;
#[cfg(feature = "mint")]
use mint;
use base::allocator::Allocator;
use base::dimension::{DimMin, DimName, DimNameAdd, DimNameSum, U1};
use base::{DefaultAllocator, Matrix2, Matrix3, Matrix4, MatrixN};
use geometry::{
Isometry, Point, Rotation, Rotation2, Rotation3, Similarity, SuperTCategoryOf, TAffine,
Transform, Translation, UnitComplex, UnitQuaternion,
};
/*
* This file provides the following conversions:
* =============================================
*
* Rotation -> Rotation
* Rotation3 -> UnitQuaternion
* Rotation2 -> UnitComplex
* Rotation -> Isometry
* Rotation -> Similarity
* Rotation -> Transform
* Rotation -> Matrix (homogeneous)
* mint::EulerAngles -> Rotation
*/
impl<N1, N2, D: DimName> SubsetOf<Rotation<N2, D>> for Rotation<N1, D>
where
N1: Real,
N2: Real + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D, D>,
{
#[inline]
fn to_superset(&self) -> Rotation<N2, D> {
Rotation::from_matrix_unchecked(self.matrix().to_superset())
}
#[inline]
fn is_in_subset(rot: &Rotation<N2, D>) -> bool {
::is_convertible::<_, MatrixN<N1, D>>(rot.matrix())
}
#[inline]
unsafe fn from_superset_unchecked(rot: &Rotation<N2, D>) -> Self {
Rotation::from_matrix_unchecked(rot.matrix().to_subset_unchecked())
}
}
impl<N1, N2> SubsetOf<UnitQuaternion<N2>> for Rotation3<N1>
where
N1: Real,
N2: Real + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> UnitQuaternion<N2> {
let q = UnitQuaternion::<N1>::from_rotation_matrix(self);
q.to_superset()
}
#[inline]
fn is_in_subset(q: &UnitQuaternion<N2>) -> bool {
::is_convertible::<_, UnitQuaternion<N1>>(q)
}
#[inline]
unsafe fn from_superset_unchecked(q: &UnitQuaternion<N2>) -> Self {
let q: UnitQuaternion<N1> = ::convert_ref_unchecked(q);
q.to_rotation_matrix()
}
}
impl<N1, N2> SubsetOf<UnitComplex<N2>> for Rotation2<N1>
where
N1: Real,
N2: Real + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> UnitComplex<N2> {
let q = UnitComplex::<N1>::from_rotation_matrix(self);
q.to_superset()
}
#[inline]
fn is_in_subset(q: &UnitComplex<N2>) -> bool {
::is_convertible::<_, UnitComplex<N1>>(q)
}
#[inline]
unsafe fn from_superset_unchecked(q: &UnitComplex<N2>) -> Self {
let q: UnitComplex<N1> = ::convert_ref_unchecked(q);
q.to_rotation_matrix()
}
}
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Rotation<N1, D>
where
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Rotation<N1, D>>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Isometry<N2, D, R> {
Isometry::from_parts(Translation::identity(), ::convert_ref(self))
}
#[inline]
fn is_in_subset(iso: &Isometry<N2, D, R>) -> bool {
iso.translation.vector.is_zero()
}
#[inline]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self {
::convert_ref_unchecked(&iso.rotation)
}
}
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Rotation<N1, D>
where
N1: Real,
N2: Real + SupersetOf<N1>,
R: AlgaRotation<Point<N2, D>> + SupersetOf<Rotation<N1, D>>,
DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Similarity<N2, D, R> {
Similarity::from_parts(Translation::identity(), ::convert_ref(self), N2::one())
}
#[inline]
fn is_in_subset(sim: &Similarity<N2, D, R>) -> bool {
sim.isometry.translation.vector.is_zero() && sim.scaling() == N2::one()
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self {
::convert_ref_unchecked(&sim.isometry.rotation)
}
}
impl<N1, N2, D, C> SubsetOf<Transform<N2, D, C>> for Rotation<N1, D>
where
N1: Real,
N2: Real + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
DefaultAllocator: Allocator<N1, D, D>
+ Allocator<N2, D, D>
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<(usize, usize), D>,
{
// needed by .is_special_orthogonal()
#[inline]
fn to_superset(&self) -> Transform<N2, D, C> {
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<N1, N2, D> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Rotation<N1, D>
where
N1: Real,
N2: Real + SupersetOf<N1>,
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
DefaultAllocator: Allocator<N1, D, D>
+ Allocator<N2, D, D>
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<(usize, usize), D>,
{
// needed by .is_special_orthogonal()
#[inline]
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool {
let rot = m.fixed_slice::<D, D>(0, 0);
let bottom = m.fixed_slice::<U1, D>(D::dim(), 0);
// Scalar types agree.
m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
// The block part is a rotation.
rot.is_special_orthogonal(N2::default_epsilon() * ::convert(100.0)) &&
// The bottom row is (0, 0, ..., 1)
bottom.iter().all(|e| e.is_zero()) && m[(D::dim(), D::dim())] == N2::one()
}
#[inline]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
let r = m.fixed_slice::<D, D>(0, 0);
Self::from_matrix_unchecked(::convert_unchecked(r.into_owned()))
}
}
#[cfg(feature = "mint")]
impl<N: Real> From<mint::EulerAngles<N, mint::IntraXYZ>> for Rotation3<N> {
fn from(euler: mint::EulerAngles<N, mint::IntraXYZ>) -> Self {
Self::from_euler_angles(euler.a, euler.b, euler.c)
}
}
impl<N: Real> From<Rotation2<N>> for Matrix3<N> {
#[inline]
fn from(q: Rotation2<N>) -> Matrix3<N> {
q.to_homogeneous()
}
}
impl<N: Real> From<Rotation2<N>> for Matrix2<N> {
#[inline]
fn from(q: Rotation2<N>) -> Matrix2<N> {
q.into_inner()
}
}
impl<N: Real> From<Rotation3<N>> for Matrix4<N> {
#[inline]
fn from(q: Rotation3<N>) -> Matrix4<N> {
q.to_homogeneous()
}
}
impl<N: Real> From<Rotation3<N>> for Matrix3<N> {
#[inline]
fn from(q: Rotation3<N>) -> Matrix3<N> {
q.into_inner()
}
}