Linear algebra library for Rust.
Go to file
Sébastien Crozet 3354ffc37b Make FloatPnt and FloatVec derive from `Index`.
The point it that `Index` provides the i-th element decomposed into the trivial basis of their
associated vector spaces.
2014-10-30 08:38:05 +01:00
benches Deprecate `na::`, move all reexport to the root crate. 2014-09-28 19:22:57 +02:00
src Make FloatPnt and FloatVec derive from `Index`. 2014-10-30 08:38:05 +01:00
tests upgrade to newer rust 2014-10-22 13:35:17 +02:00
.gitignore Add points. 2014-10-10 11:45:20 +02:00
.travis.yml Update .travis.yml. 2014-08-23 19:37:14 +02:00
Cargo.toml Add the types: DVec1, .., DVec6. 2014-08-16 12:16:26 +02:00
LICENSE Initial commit. 2013-05-14 11:34:28 +00:00
Makefile Deprecate `na::`, move all reexport to the root crate. 2014-09-28 19:22:57 +02:00
README.md Add quaternions to the feature list. 2014-10-14 22:24:10 +02:00

README.md

nalgebra

nalgebra is a low-dimensional linear algebra library written for Rust targeting:

  • general-purpose linear algebra (still lacks a lot of features…).
  • real time computer graphics.
  • real time computer physics.

An on-line version of this documentation is available here.

Using nalgebra

All the functionality of nalgebra is grouped in one place: the root module nalgebra::. This module re-exports everything and includes free functions for all traits methods doing out-of-place modifications.

  • You can import the whole prelude using:
use nalgebra::*;

The preferred way to use nalgebra is to import types and traits explicitly, and call free-functions using the na:: prefix:

extern crate "nalgebra" as na;
use na::{Vec3, Rot3, Rotation};

fn main() {
    let     a = Vec3::new(1.0f64, 1.0, 1.0);
    let mut b = Rot3::new(na::zero());

    b.append_rotation(&a);

    assert!(na::approx_eq(&na::rotation(&b), &a));
}

Features

nalgebra is meant to be a general-purpose, low-dimensional, linear algebra library, with an optimized set of tools for computer graphics and physics. Those features include:

  • Vectors with static sizes: Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6.
  • Points with static sizes: Pnt0, Pnt1, Pnt2, Pnt3, Pnt4, Pnt5, Pnt6.
  • Square matrices with static sizes: Mat1, Mat2, Mat3, Mat4, Mat5, Mat6 .
  • Rotation matrices: Rot2, Rot3, Rot4.
  • Quaternions: Quat, UnitQuat.
  • Isometries: Iso2, Iso3, Iso4.
  • 3D projections for computer graphics: Persp3, PerspMat3, Ortho3, OrthoMat3.
  • Dynamically sized vector: DVec.
  • Dynamically sized (square or rectangular) matrix: DMat.
  • A few methods for data analysis: Cov, Mean.
  • Almost one trait per functionality: useful for generic programming.
  • Operator overloading using the double trait dispatch trick. For example, the following works:
extern crate "nalgebra" as na;
use na::{Vec3, Mat3};

fn main() {
    let v: Vec3<f64> = na::zero();
    let m: Mat3<f64> = na::one();

    let _ = m * v;      // matrix-vector multiplication.
    let _ = v * m;      // vector-matrix multiplication.
    let _ = m * m;      // matrix-matrix multiplication.
    let _ = v * 2.0f64; // vector-scalar multiplication.
}