nalgebra/src/geometry/unit_complex_alga.rs
Sébastien Crozet 662cc9cd7f Run rust fmt.
2018-02-03 13:59:05 +01:00

184 lines
4.2 KiB
Rust

use alga::general::{AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid,
AbstractQuasigroup, AbstractSemigroup, Id, Identity, Inverse, Multiplicative,
Real};
use alga::linear::{AffineTransformation, DirectIsometry, Isometry, OrthogonalTransformation,
ProjectiveTransformation, Rotation, Similarity, Transformation};
use core::{DefaultAllocator, Vector2};
use core::allocator::Allocator;
use core::dimension::U2;
use geometry::{Point2, UnitComplex};
/*
*
* Implementations for UnitComplex.
*
*/
impl<N: Real> Identity<Multiplicative> for UnitComplex<N> {
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: Real> AbstractMagma<Multiplicative> for UnitComplex<N> {
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
impl<N: Real> Inverse<Multiplicative> for UnitComplex<N> {
#[inline]
fn inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn inverse_mut(&mut self) {
self.inverse_mut()
}
}
macro_rules! impl_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: Real> $marker<$operator> for UnitComplex<N> {
}
)*}
);
impl_structures!(
AbstractSemigroup<Multiplicative>,
AbstractQuasigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
impl<N: Real> Transformation<Point2<N>> for UnitComplex<N>
where
DefaultAllocator: Allocator<N, U2>,
{
#[inline]
fn transform_point(&self, pt: &Point2<N>) -> Point2<N> {
self * pt
}
#[inline]
fn transform_vector(&self, v: &Vector2<N>) -> Vector2<N> {
self * v
}
}
impl<N: Real> ProjectiveTransformation<Point2<N>> for UnitComplex<N>
where
DefaultAllocator: Allocator<N, U2>,
{
#[inline]
fn inverse_transform_point(&self, pt: &Point2<N>) -> Point2<N> {
// FIXME: would it be useful performancewise not to call inverse explicitly (i-e. implement
// the inverse transformation explicitly here) ?
self.inverse() * pt
}
#[inline]
fn inverse_transform_vector(&self, v: &Vector2<N>) -> Vector2<N> {
self.inverse() * v
}
}
impl<N: Real> AffineTransformation<Point2<N>> for UnitComplex<N>
where
DefaultAllocator: Allocator<N, U2>,
{
type Rotation = Self;
type NonUniformScaling = Id;
type Translation = Id;
#[inline]
fn decompose(&self) -> (Id, Self, Id, Self) {
(Id::new(), self.clone(), Id::new(), Self::identity())
}
#[inline]
fn append_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn prepend_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn append_rotation(&self, r: &Self::Rotation) -> Self {
r * self
}
#[inline]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self {
self * r
}
#[inline]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
}
impl<N: Real> Similarity<Point2<N>> for UnitComplex<N>
where
DefaultAllocator: Allocator<N, U2>,
{
type Scaling = Id;
#[inline]
fn translation(&self) -> Id {
Id::new()
}
#[inline]
fn rotation(&self) -> Self {
self.clone()
}
#[inline]
fn scaling(&self) -> Id {
Id::new()
}
}
macro_rules! marker_impl(
($($Trait: ident),*) => {$(
impl<N: Real> $Trait<Point2<N>> for UnitComplex<N>
where DefaultAllocator: Allocator<N, U2> { }
)*}
);
marker_impl!(Isometry, DirectIsometry, OrthogonalTransformation);
impl<N: Real> Rotation<Point2<N>> for UnitComplex<N>
where
DefaultAllocator: Allocator<N, U2>,
{
#[inline]
fn powf(&self, n: N) -> Option<Self> {
Some(self.powf(n))
}
#[inline]
fn rotation_between(a: &Vector2<N>, b: &Vector2<N>) -> Option<Self> {
Some(Self::rotation_between(a, b))
}
#[inline]
fn scaled_rotation_between(a: &Vector2<N>, b: &Vector2<N>, s: N) -> Option<Self> {
Some(Self::scaled_rotation_between(a, b, s))
}
}