nalgebra/src/geometry/rotation_alga.rs

276 lines
6.5 KiB
Rust
Executable File

use alga::general::{
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, RealField,
};
use alga::linear::{
self, AffineTransformation, DirectIsometry, Isometry, OrthogonalTransformation,
ProjectiveTransformation, Similarity, Transformation,
};
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, VectorN};
use crate::geometry::{Point, Rotation};
/*
*
* Algebraic structures.
*
*/
impl<N: RealField, D: DimName> Identity<Multiplicative> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField, D: DimName> TwoSidedInverse<Multiplicative> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
#[inline]
fn two_sided_inverse(&self) -> Self {
self.transpose()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.transpose_mut()
}
}
impl<N: RealField, D: DimName> AbstractMagma<Multiplicative> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D>
{
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimName> $marker<$operator> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
/*
*
* Transformation groups.
*
*/
impl<N: RealField, D: DimName> Transformation<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.transform_vector(v)
}
}
impl<N: RealField, D: DimName> ProjectiveTransformation<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.inverse_transform_vector(v)
}
}
impl<N: RealField, D: DimName> AffineTransformation<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
type Rotation = Self;
type NonUniformScaling = Id;
type Translation = Id;
#[inline]
fn decompose(&self) -> (Id, Self, Id, Self) {
(Id::new(), self.clone(), Id::new(), Self::identity())
}
#[inline]
fn append_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn prepend_translation(&self, _: &Self::Translation) -> Self {
self.clone()
}
#[inline]
fn append_rotation(&self, r: &Self::Rotation) -> Self {
r * self
}
#[inline]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self {
self * r
}
#[inline]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
}
impl<N: RealField, D: DimName> Similarity<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
type Scaling = Id;
#[inline]
fn translation(&self) -> Id {
Id::new()
}
#[inline]
fn rotation(&self) -> Self {
self.clone()
}
#[inline]
fn scaling(&self) -> Id {
Id::new()
}
}
macro_rules! marker_impl(
($($Trait: ident),*) => {$(
impl<N: RealField, D: DimName> $Trait<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> { }
)*}
);
marker_impl!(Isometry, DirectIsometry, OrthogonalTransformation);
/// Subgroups of the n-dimensional rotation group `SO(n)`.
impl<N: RealField, D: DimName> linear::Rotation<Point<N, D>> for Rotation<N, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<N, D>
{
#[inline]
fn powf(&self, _: N) -> Option<Self> {
// XXX: Add the general case.
// XXX: Use specialization for 2D and 3D.
unimplemented!()
}
#[inline]
fn rotation_between(_: &VectorN<N, D>, _: &VectorN<N, D>) -> Option<Self> {
// XXX: Add the general case.
// XXX: Use specialization for 2D and 3D.
unimplemented!()
}
#[inline]
fn scaled_rotation_between(_: &VectorN<N, D>, _: &VectorN<N, D>, _: N) -> Option<Self> {
// XXX: Add the general case.
// XXX: Use specialization for 2D and 3D.
unimplemented!()
}
}
/*
impl<N: RealField> Matrix for Rotation<N> {
type Field = N;
type Row = Matrix<N>;
type Column = Matrix<N>;
type Transpose = Self;
#[inline]
fn nrows(&self) -> usize {
self.submatrix.nrows()
}
#[inline]
fn ncolumns(&self) -> usize {
self.submatrix.ncolumns()
}
#[inline]
fn row(&self, i: usize) -> Self::Row {
self.submatrix.row(i)
}
#[inline]
fn column(&self, i: usize) -> Self::Column {
self.submatrix.column(i)
}
#[inline]
fn get(&self, i: usize, j: usize) -> Self::Field {
self.submatrix[(i, j)]
}
#[inline]
unsafe fn get_unchecked(&self, i: usize, j: usize) -> Self::Field {
self.submatrix.at_fast(i, j)
}
#[inline]
fn transpose(&self) -> Self::Transpose {
Rotation::from_matrix_unchecked(self.submatrix.transpose())
}
}
impl<N: RealField> SquareMatrix for Rotation<N> {
type Vector = Matrix<N>;
#[inline]
fn diagonal(&self) -> Self::Coordinates {
self.submatrix.diagonal()
}
#[inline]
fn determinant(&self) -> Self::Field {
crate::one()
}
#[inline]
fn try_inverse(&self) -> Option<Self> {
Some(::transpose(self))
}
#[inline]
fn try_inverse_mut(&mut self) -> bool {
self.transpose_mut();
true
}
#[inline]
fn transpose_mut(&mut self) {
self.submatrix.transpose_mut()
}
}
impl<N: RealField> InversibleSquareMatrix for Rotation<N> { }
*/