nalgebra/src/structs/quat.rs
2014-12-23 19:09:06 +01:00

471 lines
12 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Quaternion definition.
#![allow(missing_docs)] // we allow missing to avoid having to document the dispatch trait.
use std::mem;
use std::num;
use std::rand::{Rand, Rng};
use std::slice::{Iter, IterMut};
use structs::{Vec3, Pnt3, Rot3, Mat3};
use traits::operations::{ApproxEq, Inv, POrd, POrdering, Axpy, ScalarAdd, ScalarSub, ScalarMul,
ScalarDiv};
use traits::structure::{Cast, Indexable, Iterable, IterableMut, Dim, Shape, BaseFloat, BaseNum, Zero,
One, Bounded};
use traits::geometry::{Norm, Rotation, Rotate, Transform};
/// A quaternion.
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Rand, Show, Copy)]
pub struct Quat<N> {
/// The scalar component of the quaternion.
pub w: N,
/// The first vector component of the quaternion.
pub i: N,
/// The second vector component of the quaternion.
pub j: N,
/// The third vector component of the quaternion.
pub k: N
}
impl<N> Quat<N> {
/// Creates a new quaternion from its components.
#[inline]
pub fn new(w: N, i: N, j: N, k: N) -> Quat<N> {
Quat {
w: w,
i: i,
j: j,
k: k
}
}
/// The vector part `(i, j, k)` of this quaternion.
#[inline]
pub fn vector<'a>(&'a self) -> &'a Vec3<N> {
// FIXME: do this require a `repr(C)` ?
unsafe {
mem::transmute(&self.i)
}
}
/// The scalar part `w` of this quaternion.
#[inline]
pub fn scalar<'a>(&'a self) -> &'a N {
&self.w
}
}
impl<N: Neg<N> + Copy> Quat<N> {
/// Replaces this quaternion by its conjugate.
#[inline]
pub fn conjugate(&mut self) {
self.i = -self.i;
self.j = -self.j;
self.k = -self.k;
}
}
impl<N: BaseFloat + ApproxEq<N>> Inv for Quat<N> {
#[inline]
fn inv_cpy(&self) -> Option<Quat<N>> {
let mut res = *self;
if res.inv() {
Some(res)
}
else {
None
}
}
#[inline]
fn inv(&mut self) -> bool {
let sqnorm = Norm::sqnorm(self);
if ApproxEq::approx_eq(&sqnorm, &::zero()) {
false
}
else {
self.conjugate();
self.w = self.w / sqnorm;
self.i = self.i / sqnorm;
self.j = self.j / sqnorm;
self.k = self.k / sqnorm;
true
}
}
}
impl<N: BaseFloat> Norm<N> for Quat<N> {
#[inline]
fn sqnorm(&self) -> N {
self.w * self.w + self.i * self.i + self.j * self.j + self.k * self.k
}
#[inline]
fn normalize_cpy(&self) -> Quat<N> {
let n = self.norm();
Quat::new(self.w / n, self.i / n, self.j / n, self.k / n)
}
#[inline]
fn normalize(&mut self) -> N {
let n = Norm::norm(self);
self.w = self.w / n;
self.i = self.i / n;
self.j = self.j / n;
self.k = self.k / n;
n
}
}
impl<N: Copy + Mul<N, N> + Sub<N, N> + Add<N, N>> Mul<Quat<N>, Quat<N>> for Quat<N> {
#[inline]
fn mul(self, right: Quat<N>) -> Quat<N> {
Quat::new(
self.w * right.w - self.i * right.i - self.j * right.j - self.k * right.k,
self.w * right.i + self.i * right.w + self.j * right.k - self.k * right.j,
self.w * right.j - self.i * right.k + self.j * right.w + self.k * right.i,
self.w * right.k + self.i * right.j - self.j * right.i + self.k * right.w)
}
}
impl<N: ApproxEq<N> + BaseFloat> Div<Quat<N>, Quat<N>> for Quat<N> {
#[inline]
fn div(self, right: Quat<N>) -> Quat<N> {
self * right.inv_cpy().expect("Unable to invert the denominator.")
}
}
/// A unit quaternion that can represent a 3D rotation.
#[deriving(Eq, PartialEq, Encodable, Decodable, Clone, Hash, Show, Copy)]
pub struct UnitQuat<N> {
q: Quat<N>
}
impl<N: BaseFloat> UnitQuat<N> {
/// Creates a new unit quaternion from the axis-angle representation of a rotation.
#[inline]
pub fn new(axisangle: Vec3<N>) -> UnitQuat<N> {
let sqang = Norm::sqnorm(&axisangle);
if ::is_zero(&sqang) {
::one()
}
else {
let ang = sqang.sqrt();
let (s, c) = (ang / num::cast(2.0f64).unwrap()).sin_cos();
let s_ang = s / ang;
unsafe {
UnitQuat::new_with_unit_quat(
Quat::new(
c,
axisangle.x * s_ang,
axisangle.y * s_ang,
axisangle.z * s_ang)
)
}
}
}
/// Creates a new unit quaternion from a quaternion.
///
/// The input quaternion will be normalized.
#[inline]
pub fn new_with_quat(q: Quat<N>) -> UnitQuat<N> {
let mut q = q;
let _ = q.normalize();
UnitQuat {
q: q
}
}
/// Creates a new unit quaternion from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
#[inline]
pub fn new_with_euler_angles(roll: N, pitch: N, yaw: N) -> UnitQuat<N> {
let _0_5: N = num::cast(0.5f64).unwrap();
let (sr, cr) = (roll * _0_5).sin_cos();
let (sp, cp) = (pitch * _0_5).sin_cos();
let (sy, cy) = (yaw * _0_5).sin_cos();
unsafe {
UnitQuat::new_with_unit_quat(
Quat::new(
cr * cp * cy + sr * sp * sy,
sr * cp * cy - cr * sp * sy,
cr * sp * cy + sr * cp * sy,
cr * cp * sy - sr * sp * cy)
)
}
}
/// Builds a rotation matrix from this quaternion.
pub fn to_rot(&self) -> Rot3<N> {
let _2: N = num::cast(2.0f64).unwrap();
let ww = self.q.w * self.q.w;
let ii = self.q.i * self.q.i;
let jj = self.q.j * self.q.j;
let kk = self.q.k * self.q.k;
let ij = _2 * self.q.i * self.q.j;
let wk = _2 * self.q.w * self.q.k;
let wj = _2 * self.q.w * self.q.j;
let ik = _2 * self.q.i * self.q.k;
let jk = _2 * self.q.j * self.q.k;
let wi = _2 * self.q.w * self.q.i;
unsafe {
Rot3::new_with_mat(
Mat3::new(
ww + ii - jj - kk, ij - wk, wj + ik,
wk + ij, ww - ii + jj - kk, jk - wi,
ik - wj, wi + jk, ww - ii - jj + kk
)
)
}
}
}
impl<N> UnitQuat<N> {
/// Creates a new unit quaternion from a quaternion.
///
/// This is unsafe because the input quaternion will not be normalized.
#[inline]
pub unsafe fn new_with_unit_quat(q: Quat<N>) -> UnitQuat<N> {
UnitQuat {
q: q
}
}
/// The `Quat` representation of this unit quaternion.
#[inline]
pub fn quat<'a>(&'a self) -> &'a Quat<N> {
&self.q
}
}
impl<N: BaseNum> One for UnitQuat<N> {
#[inline]
fn one() -> UnitQuat<N> {
unsafe {
UnitQuat::new_with_unit_quat(Quat::new(::one(), ::zero(), ::zero(), ::zero()))
}
}
}
impl<N: Copy + Neg<N>> Inv for UnitQuat<N> {
#[inline]
fn inv_cpy(&self) -> Option<UnitQuat<N>> {
let mut cpy = *self;
cpy.inv();
Some(cpy)
}
#[inline]
fn inv(&mut self) -> bool {
self.q.conjugate();
true
}
}
impl<N: Rand + BaseFloat> Rand for UnitQuat<N> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> UnitQuat<N> {
UnitQuat::new(rng.gen())
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for UnitQuat<N> {
#[inline]
fn approx_epsilon(_: Option<UnitQuat<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_eq_eps(&self, other: &UnitQuat<N>, eps: &N) -> bool {
ApproxEq::approx_eq_eps(&self.q, &other.q, eps)
}
}
impl<N: BaseFloat + ApproxEq<N>> Div<UnitQuat<N>, UnitQuat<N>> for UnitQuat<N> {
#[inline]
fn div(self, other: UnitQuat<N>) -> UnitQuat<N> {
UnitQuat { q: self.q / other.q }
}
}
impl<N: BaseNum> Mul<UnitQuat<N>, UnitQuat<N>> for UnitQuat<N> {
#[inline]
fn mul(self, right: UnitQuat<N>) -> UnitQuat<N> {
UnitQuat { q: self.q * right.q }
}
}
impl<N: BaseNum> Mul<Vec3<N>, Vec3<N>> for UnitQuat<N> {
#[inline]
fn mul(self, right: Vec3<N>) -> Vec3<N> {
let _2: N = ::one::<N>() + ::one();
let mut t = ::cross(self.q.vector(), &right);
t.x = t.x * _2;
t.y = t.y * _2;
t.z = t.z * _2;
Vec3::new(t.x * self.q.w, t.y * self.q.w, t.z * self.q.w) + ::cross(self.q.vector(), &t) + right
}
}
impl<N: BaseNum> Mul<Pnt3<N>, Pnt3<N>> for UnitQuat<N> {
#[inline]
fn mul(self, right: Pnt3<N>) -> Pnt3<N> {
::orig::<Pnt3<N>>() + self * *right.as_vec()
}
}
impl<N: BaseNum> Mul<UnitQuat<N>, Vec3<N>> for Vec3<N> {
#[inline]
fn mul(self, right: UnitQuat<N>) -> Vec3<N> {
let mut inv_quat = right;
inv_quat.inv();
inv_quat * self
}
}
impl<N: BaseNum> Mul<UnitQuat<N>, Pnt3<N>> for Pnt3<N> {
#[inline]
fn mul(self, right: UnitQuat<N>) -> Pnt3<N> {
::orig::<Pnt3<N>>() + *self.as_vec() * right
}
}
impl<N: BaseFloat> Rotation<Vec3<N>> for UnitQuat<N> {
#[inline]
fn rotation(&self) -> Vec3<N> {
let _2 = ::one::<N>() + ::one();
let mut v = *self.q.vector();
let ang = _2 * v.normalize().atan2(self.q.w);
if ::is_zero(&ang) {
::zero()
}
else {
Vec3::new(v.x * ang, v.y * ang, v.z * ang)
}
}
#[inline]
fn inv_rotation(&self) -> Vec3<N> {
-self.rotation()
}
#[inline]
fn append_rotation(&mut self, amount: &Vec3<N>) {
*self = Rotation::append_rotation_cpy(self, amount)
}
#[inline]
fn append_rotation_cpy(&self, amount: &Vec3<N>) -> UnitQuat<N> {
*self * UnitQuat::new(*amount)
}
#[inline]
fn prepend_rotation(&mut self, amount: &Vec3<N>) {
*self = Rotation::prepend_rotation_cpy(self, amount)
}
#[inline]
fn prepend_rotation_cpy(&self, amount: &Vec3<N>) -> UnitQuat<N> {
UnitQuat::new(*amount) * *self
}
#[inline]
fn set_rotation(&mut self, v: Vec3<N>) {
*self = UnitQuat::new(v)
}
}
impl<N: BaseNum> Rotate<Vec3<N>> for UnitQuat<N> {
#[inline]
fn rotate(&self, v: &Vec3<N>) -> Vec3<N> {
*self * *v
}
#[inline]
fn inv_rotate(&self, v: &Vec3<N>) -> Vec3<N> {
*v * *self
}
}
impl<N: BaseNum> Rotate<Pnt3<N>> for UnitQuat<N> {
#[inline]
fn rotate(&self, p: &Pnt3<N>) -> Pnt3<N> {
*self * *p
}
#[inline]
fn inv_rotate(&self, p: &Pnt3<N>) -> Pnt3<N> {
*p * *self
}
}
impl<N: BaseNum> Transform<Vec3<N>> for UnitQuat<N> {
#[inline]
fn transform(&self, v: &Vec3<N>) -> Vec3<N> {
*self * *v
}
#[inline]
fn inv_transform(&self, v: &Vec3<N>) -> Vec3<N> {
*v * *self
}
}
impl<N: BaseNum> Transform<Pnt3<N>> for UnitQuat<N> {
#[inline]
fn transform(&self, p: &Pnt3<N>) -> Pnt3<N> {
*self * *p
}
#[inline]
fn inv_transform(&self, p: &Pnt3<N>) -> Pnt3<N> {
*p * *self
}
}
ord_impl!(Quat, w, i, j, k);
vec_axis_impl!(Quat, w, i, j, k);
vec_cast_impl!(Quat, w, i, j, k);
as_array_impl!(Quat, 4);
index_impl!(Quat);
indexable_impl!(Quat, 4);
at_fast_impl!(Quat, 4);
new_repeat_impl!(Quat, val, w, i, j, k);
dim_impl!(Quat, 3);
container_impl!(Quat);
add_impl!(Quat, w, i, j, k);
sub_impl!(Quat, w, i, j, k);
scalar_add_impl!(Quat, w, i, j, k);
scalar_sub_impl!(Quat, w, i, j, k);
scalar_mul_impl!(Quat, w, i, j, k);
scalar_div_impl!(Quat, w, i, j, k);
neg_impl!(Quat, w, i, j, k);
scalar_ops_impl!(Quat, w, i, j, k);
zero_one_impl!(Quat, w, i, j, k);
approx_eq_impl!(Quat, w, i, j, k);
from_iterator_impl!(Quat, iterator, iterator, iterator, iterator);
bounded_impl!(Quat, w, i, j, k);
axpy_impl!(Quat, w, i, j, k);
iterable_impl!(Quat, 4);
iterable_mut_impl!(Quat, 4);
dim_impl!(UnitQuat, 3);