382 lines
12 KiB
Rust
382 lines
12 KiB
Rust
#[cfg(feature = "serde-serialize")]
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use crate::allocator::{Allocator, Reallocator};
|
|
use crate::base::{DefaultAllocator, Matrix, OMatrix, Scalar};
|
|
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
|
use crate::dimension::{Dim, DimMin, DimMinimum};
|
|
use crate::storage::{Storage, StorageMut};
|
|
use simba::scalar::{ComplexField, Field};
|
|
use std::mem;
|
|
|
|
use crate::linalg::PermutationSequence;
|
|
|
|
/// LU decomposition with partial (row) pivoting.
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(bound(serialize = "DefaultAllocator: Allocator<T, R, C> +
|
|
Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
OMatrix<T, R, C>: Serialize,
|
|
PermutationSequence<DimMinimum<R, C>>: Serialize"))
|
|
)]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize",
|
|
serde(bound(deserialize = "DefaultAllocator: Allocator<T, R, C> +
|
|
Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
OMatrix<T, R, C>: Deserialize<'de>,
|
|
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
|
|
)]
|
|
#[derive(Clone, Debug)]
|
|
pub struct LU<T: ComplexField, R: DimMin<C>, C: Dim>
|
|
where
|
|
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
{
|
|
lu: OMatrix<T, R, C>,
|
|
p: PermutationSequence<DimMinimum<R, C>>,
|
|
}
|
|
|
|
impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for LU<T, R, C>
|
|
where
|
|
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
OMatrix<T, R, C>: Copy,
|
|
PermutationSequence<DimMinimum<R, C>>: Copy,
|
|
{
|
|
}
|
|
|
|
/// Performs a LU decomposition to overwrite `out` with the inverse of `matrix`.
|
|
///
|
|
/// If `matrix` is not invertible, `false` is returned and `out` may contain invalid data.
|
|
pub fn try_invert_to<T: ComplexField, D: Dim, S>(
|
|
mut matrix: OMatrix<T, D, D>,
|
|
out: &mut Matrix<T, D, D, S>,
|
|
) -> bool
|
|
where
|
|
S: StorageMut<T, D, D>,
|
|
DefaultAllocator: Allocator<T, D, D>,
|
|
{
|
|
assert!(
|
|
matrix.is_square(),
|
|
"LU inversion: unable to invert a rectangular matrix."
|
|
);
|
|
let dim = matrix.nrows();
|
|
|
|
out.fill_with_identity();
|
|
|
|
for i in 0..dim {
|
|
let piv = matrix.slice_range(i.., i).icamax() + i;
|
|
let diag = matrix[(piv, i)];
|
|
|
|
if diag.is_zero() {
|
|
return false;
|
|
}
|
|
|
|
if piv != i {
|
|
out.swap_rows(i, piv);
|
|
matrix.columns_range_mut(..i).swap_rows(i, piv);
|
|
gauss_step_swap(&mut matrix, diag, i, piv);
|
|
} else {
|
|
gauss_step(&mut matrix, diag, i);
|
|
}
|
|
}
|
|
|
|
let _ = matrix.solve_lower_triangular_with_diag_mut(out, T::one());
|
|
matrix.solve_upper_triangular_mut(out)
|
|
}
|
|
|
|
impl<T: ComplexField, R: DimMin<C>, C: Dim> LU<T, R, C>
|
|
where
|
|
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
|
|
{
|
|
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
|
pub fn new(mut matrix: OMatrix<T, R, C>) -> Self {
|
|
let (nrows, ncols) = matrix.data.shape();
|
|
let min_nrows_ncols = nrows.min(ncols);
|
|
|
|
let mut p = PermutationSequence::identity_generic(min_nrows_ncols);
|
|
|
|
if min_nrows_ncols.value() == 0 {
|
|
return LU { lu: matrix, p };
|
|
}
|
|
|
|
for i in 0..min_nrows_ncols.value() {
|
|
let piv = matrix.slice_range(i.., i).icamax() + i;
|
|
let diag = matrix[(piv, i)];
|
|
|
|
if diag.is_zero() {
|
|
// No non-zero entries on this column.
|
|
continue;
|
|
}
|
|
|
|
if piv != i {
|
|
p.append_permutation(i, piv);
|
|
matrix.columns_range_mut(..i).swap_rows(i, piv);
|
|
gauss_step_swap(&mut matrix, diag, i, piv);
|
|
} else {
|
|
gauss_step(&mut matrix, diag, i);
|
|
}
|
|
}
|
|
|
|
LU { lu: matrix, p }
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
pub fn lu_internal(&self) -> &OMatrix<T, R, C> {
|
|
&self.lu
|
|
}
|
|
|
|
/// The lower triangular matrix of this decomposition.
|
|
#[inline]
|
|
pub fn l(&self) -> OMatrix<T, R, DimMinimum<R, C>>
|
|
where
|
|
DefaultAllocator: Allocator<T, R, DimMinimum<R, C>>,
|
|
{
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
let mut m = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
|
|
m.fill_upper_triangle(T::zero(), 1);
|
|
m.fill_diagonal(T::one());
|
|
m
|
|
}
|
|
|
|
/// The lower triangular matrix of this decomposition.
|
|
fn l_unpack_with_p(
|
|
self,
|
|
) -> (
|
|
OMatrix<T, R, DimMinimum<R, C>>,
|
|
PermutationSequence<DimMinimum<R, C>>,
|
|
)
|
|
where
|
|
DefaultAllocator: Reallocator<T, R, C, R, DimMinimum<R, C>>,
|
|
{
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), T::zero());
|
|
m.fill_upper_triangle(T::zero(), 1);
|
|
m.fill_diagonal(T::one());
|
|
(m, self.p)
|
|
}
|
|
|
|
/// The lower triangular matrix of this decomposition.
|
|
#[inline]
|
|
pub fn l_unpack(self) -> OMatrix<T, R, DimMinimum<R, C>>
|
|
where
|
|
DefaultAllocator: Reallocator<T, R, C, R, DimMinimum<R, C>>,
|
|
{
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), T::zero());
|
|
m.fill_upper_triangle(T::zero(), 1);
|
|
m.fill_diagonal(T::one());
|
|
m
|
|
}
|
|
|
|
/// The upper triangular matrix of this decomposition.
|
|
#[inline]
|
|
pub fn u(&self) -> OMatrix<T, DimMinimum<R, C>, C>
|
|
where
|
|
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>,
|
|
{
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
self.lu.rows_generic(0, nrows.min(ncols)).upper_triangle()
|
|
}
|
|
|
|
/// The row permutations of this decomposition.
|
|
#[inline]
|
|
pub fn p(&self) -> &PermutationSequence<DimMinimum<R, C>> {
|
|
&self.p
|
|
}
|
|
|
|
/// The row permutations and two triangular matrices of this decomposition: `(P, L, U)`.
|
|
#[inline]
|
|
pub fn unpack(
|
|
self,
|
|
) -> (
|
|
PermutationSequence<DimMinimum<R, C>>,
|
|
OMatrix<T, R, DimMinimum<R, C>>,
|
|
OMatrix<T, DimMinimum<R, C>, C>,
|
|
)
|
|
where
|
|
DefaultAllocator: Allocator<T, R, DimMinimum<R, C>>
|
|
+ Allocator<T, DimMinimum<R, C>, C>
|
|
+ Reallocator<T, R, C, R, DimMinimum<R, C>>,
|
|
{
|
|
// Use reallocation for either l or u.
|
|
let u = self.u();
|
|
let (l, p) = self.l_unpack_with_p();
|
|
|
|
(p, l, u)
|
|
}
|
|
}
|
|
|
|
impl<T: ComplexField, D: DimMin<D, Output = D>> LU<T, D, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D, D> + Allocator<(usize, usize), D>,
|
|
{
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
///
|
|
/// Returns `None` if `self` is not invertible.
|
|
pub fn solve<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &Matrix<T, R2, C2, S2>,
|
|
) -> Option<OMatrix<T, R2, C2>>
|
|
where
|
|
S2: Storage<T, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
DefaultAllocator: Allocator<T, R2, C2>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
if self.solve_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
///
|
|
/// If the decomposed matrix is not invertible, this returns `false` and its input `b` may
|
|
/// be overwritten with garbage.
|
|
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<T, R2, C2, S2>) -> bool
|
|
where
|
|
S2: StorageMut<T, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
assert_eq!(
|
|
self.lu.nrows(),
|
|
b.nrows(),
|
|
"LU solve matrix dimension mismatch."
|
|
);
|
|
assert!(
|
|
self.lu.is_square(),
|
|
"LU solve: unable to solve a non-square system."
|
|
);
|
|
|
|
self.p.permute_rows(b);
|
|
let _ = self.lu.solve_lower_triangular_with_diag_mut(b, T::one());
|
|
self.lu.solve_upper_triangular_mut(b)
|
|
}
|
|
|
|
/// Computes the inverse of the decomposed matrix.
|
|
///
|
|
/// Returns `None` if the matrix is not invertible.
|
|
pub fn try_inverse(&self) -> Option<OMatrix<T, D, D>> {
|
|
assert!(
|
|
self.lu.is_square(),
|
|
"LU inverse: unable to compute the inverse of a non-square matrix."
|
|
);
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
let mut res = OMatrix::identity_generic(nrows, ncols);
|
|
if self.try_inverse_to(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Computes the inverse of the decomposed matrix and outputs the result to `out`.
|
|
///
|
|
/// If the decomposed matrix is not invertible, this returns `false` and `out` may be
|
|
/// overwritten with garbage.
|
|
pub fn try_inverse_to<S2: StorageMut<T, D, D>>(&self, out: &mut Matrix<T, D, D, S2>) -> bool {
|
|
assert!(
|
|
self.lu.is_square(),
|
|
"LU inverse: unable to compute the inverse of a non-square matrix."
|
|
);
|
|
assert!(
|
|
self.lu.shape() == out.shape(),
|
|
"LU inverse: mismatched output shape."
|
|
);
|
|
|
|
out.fill_with_identity();
|
|
self.solve_mut(out)
|
|
}
|
|
|
|
/// Computes the determinant of the decomposed matrix.
|
|
pub fn determinant(&self) -> T {
|
|
let dim = self.lu.nrows();
|
|
assert!(
|
|
self.lu.is_square(),
|
|
"LU determinant: unable to compute the determinant of a non-square matrix."
|
|
);
|
|
|
|
let mut res = T::one();
|
|
for i in 0..dim {
|
|
res *= unsafe { *self.lu.get_unchecked((i, i)) };
|
|
}
|
|
|
|
res * self.p.determinant()
|
|
}
|
|
|
|
/// Indicates if the decomposed matrix is invertible.
|
|
pub fn is_invertible(&self) -> bool {
|
|
assert!(
|
|
self.lu.is_square(),
|
|
"QR: unable to test the invertibility of a non-square matrix."
|
|
);
|
|
|
|
for i in 0..self.lu.nrows() {
|
|
if self.lu[(i, i)].is_zero() {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
/// Executes one step of gaussian elimination on the i-th row and column of `matrix`. The diagonal
|
|
/// element `matrix[(i, i)]` is provided as argument.
|
|
pub fn gauss_step<T, R: Dim, C: Dim, S>(matrix: &mut Matrix<T, R, C, S>, diag: T, i: usize)
|
|
where
|
|
T: Scalar + Field,
|
|
S: StorageMut<T, R, C>,
|
|
{
|
|
let mut submat = matrix.slice_range_mut(i.., i..);
|
|
|
|
let inv_diag = T::one() / diag;
|
|
|
|
let (mut coeffs, mut submat) = submat.columns_range_pair_mut(0, 1..);
|
|
|
|
let mut coeffs = coeffs.rows_range_mut(1..);
|
|
coeffs *= inv_diag;
|
|
|
|
let (pivot_row, mut down) = submat.rows_range_pair_mut(0, 1..);
|
|
|
|
for k in 0..pivot_row.ncols() {
|
|
down.column_mut(k)
|
|
.axpy(-pivot_row[k].inlined_clone(), &coeffs, T::one());
|
|
}
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
/// Swaps the rows `i` with the row `piv` and executes one step of gaussian elimination on the i-th
|
|
/// row and column of `matrix`. The diagonal element `matrix[(i, i)]` is provided as argument.
|
|
pub fn gauss_step_swap<T, R: Dim, C: Dim, S>(
|
|
matrix: &mut Matrix<T, R, C, S>,
|
|
diag: T,
|
|
i: usize,
|
|
piv: usize,
|
|
) where
|
|
T: Scalar + Field,
|
|
S: StorageMut<T, R, C>,
|
|
{
|
|
let piv = piv - i;
|
|
let mut submat = matrix.slice_range_mut(i.., i..);
|
|
|
|
let inv_diag = T::one() / diag;
|
|
|
|
let (mut coeffs, mut submat) = submat.columns_range_pair_mut(0, 1..);
|
|
|
|
coeffs.swap((0, 0), (piv, 0));
|
|
let mut coeffs = coeffs.rows_range_mut(1..);
|
|
coeffs *= inv_diag;
|
|
|
|
let (mut pivot_row, mut down) = submat.rows_range_pair_mut(0, 1..);
|
|
|
|
for k in 0..pivot_row.ncols() {
|
|
mem::swap(&mut pivot_row[k], &mut down[(piv - 1, k)]);
|
|
down.column_mut(k)
|
|
.axpy(-pivot_row[k].inlined_clone(), &coeffs, T::one());
|
|
}
|
|
}
|