nalgebra/src/linalg/lu.rs
2018-12-29 13:41:56 +01:00

379 lines
12 KiB
Rust

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use alga::general::{Field, Real};
use allocator::{Allocator, Reallocator};
use base::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar};
use constraint::{SameNumberOfRows, ShapeConstraint};
use dimension::{Dim, DimMin, DimMinimum};
use std::mem;
use storage::{Storage, StorageMut};
use linalg::PermutationSequence;
/// LU decomposition with partial (row) pivoting.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Serialize,
PermutationSequence<DimMinimum<R, C>>: Serialize"
))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Deserialize<'de>,
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"
))
)]
#[derive(Clone, Debug)]
pub struct LU<N: Real, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
{
lu: MatrixMN<N, R, C>,
p: PermutationSequence<DimMinimum<R, C>>,
}
impl<N: Real, R: DimMin<C>, C: Dim> Copy for LU<N, R, C>
where
DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>,
MatrixMN<N, R, C>: Copy,
PermutationSequence<DimMinimum<R, C>>: Copy,
{}
/// Performs a LU decomposition to overwrite `out` with the inverse of `matrix`.
///
/// If `matrix` is not invertible, `false` is returned and `out` may contain invalid data.
pub fn try_invert_to<N: Real, D: Dim, S>(
mut matrix: MatrixN<N, D>,
out: &mut Matrix<N, D, D, S>,
) -> bool
where
S: StorageMut<N, D, D>,
DefaultAllocator: Allocator<N, D, D>,
{
assert!(
matrix.is_square(),
"LU inversion: unable to invert a rectangular matrix."
);
let dim = matrix.nrows();
out.fill_with_identity();
for i in 0..dim {
let piv = matrix.slice_range(i.., i).iamax() + i;
let diag = matrix[(piv, i)];
if diag.is_zero() {
return false;
}
if piv != i {
out.swap_rows(i, piv);
matrix.columns_range_mut(..i).swap_rows(i, piv);
gauss_step_swap(&mut matrix, diag, i, piv);
} else {
gauss_step(&mut matrix, diag, i);
}
}
let _ = matrix.solve_lower_triangular_with_diag_mut(out, N::one());
matrix.solve_upper_triangular_mut(out)
}
impl<N: Real, R: DimMin<C>, C: Dim> LU<N, R, C>
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
{
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
pub fn new(mut matrix: MatrixMN<N, R, C>) -> Self {
let (nrows, ncols) = matrix.data.shape();
let min_nrows_ncols = nrows.min(ncols);
let mut p = PermutationSequence::identity_generic(min_nrows_ncols);
if min_nrows_ncols.value() == 0 {
return LU { lu: matrix, p: p };
}
for i in 0..min_nrows_ncols.value() {
let piv = matrix.slice_range(i.., i).iamax() + i;
let diag = matrix[(piv, i)];
if diag.is_zero() {
// No non-zero entries on this column.
continue;
}
if piv != i {
p.append_permutation(i, piv);
matrix.columns_range_mut(..i).swap_rows(i, piv);
gauss_step_swap(&mut matrix, diag, i, piv);
} else {
gauss_step(&mut matrix, diag, i);
}
}
LU { lu: matrix, p: p }
}
#[doc(hidden)]
pub fn lu_internal(&self) -> &MatrixMN<N, R, C> {
&self.lu
}
/// The lower triangular matrix of this decomposition.
#[inline]
pub fn l(&self) -> MatrixMN<N, R, DimMinimum<R, C>>
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.lu.data.shape();
let mut m = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
m.fill_upper_triangle(N::zero(), 1);
m.fill_diagonal(N::one());
m
}
/// The lower triangular matrix of this decomposition.
fn l_unpack_with_p(
self,
) -> (
MatrixMN<N, R, DimMinimum<R, C>>,
PermutationSequence<DimMinimum<R, C>>,
)
where DefaultAllocator: Reallocator<N, R, C, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.lu.data.shape();
let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), N::zero());
m.fill_upper_triangle(N::zero(), 1);
m.fill_diagonal(N::one());
(m, self.p)
}
/// The lower triangular matrix of this decomposition.
#[inline]
pub fn l_unpack(self) -> MatrixMN<N, R, DimMinimum<R, C>>
where DefaultAllocator: Reallocator<N, R, C, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.lu.data.shape();
let mut m = self.lu.resize_generic(nrows, nrows.min(ncols), N::zero());
m.fill_upper_triangle(N::zero(), 1);
m.fill_diagonal(N::one());
m
}
/// The upper triangular matrix of this decomposition.
#[inline]
pub fn u(&self) -> MatrixMN<N, DimMinimum<R, C>, C>
where DefaultAllocator: Allocator<N, DimMinimum<R, C>, C> {
let (nrows, ncols) = self.lu.data.shape();
self.lu.rows_generic(0, nrows.min(ncols)).upper_triangle()
}
/// The row permutations of this decomposition.
#[inline]
pub fn p(&self) -> &PermutationSequence<DimMinimum<R, C>> {
&self.p
}
/// The row permutations and two triangular matrices of this decomposition: `(P, L, U)`.
#[inline]
pub fn unpack(
self,
) -> (
PermutationSequence<DimMinimum<R, C>>,
MatrixMN<N, R, DimMinimum<R, C>>,
MatrixMN<N, DimMinimum<R, C>, C>,
)
where DefaultAllocator: Allocator<N, R, DimMinimum<R, C>>
+ Allocator<N, DimMinimum<R, C>, C>
+ Reallocator<N, R, C, R, DimMinimum<R, C>> {
// Use reallocation for either l or u.
let u = self.u();
let (l, p) = self.l_unpack_with_p();
(p, l, u)
}
}
impl<N: Real, D: DimMin<D, Output = D>> LU<N, D, D>
where DefaultAllocator: Allocator<N, D, D> + Allocator<(usize, usize), D>
{
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
///
/// Returns `None` if `self` is not invertible.
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<N, R2, C2>,
{
let mut res = b.clone_owned();
if self.solve_mut(&mut res) {
Some(res)
} else {
None
}
}
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
///
/// If the decomposed matrix is not invertible, this returns `false` and its input `b` may
/// be overwritten with garbage.
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<N, R2, C2, S2>) -> bool
where
S2: StorageMut<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
assert_eq!(
self.lu.nrows(),
b.nrows(),
"LU solve matrix dimension mismatch."
);
assert!(
self.lu.is_square(),
"LU solve: unable to solve a non-square system."
);
self.p.permute_rows(b);
let _ = self.lu.solve_lower_triangular_with_diag_mut(b, N::one());
self.lu.solve_upper_triangular_mut(b)
}
/// Computes the inverse of the decomposed matrix.
///
/// Returns `None` if the matrix is not invertible.
pub fn try_inverse(&self) -> Option<MatrixN<N, D>> {
assert!(
self.lu.is_square(),
"LU inverse: unable to compute the inverse of a non-square matrix."
);
let (nrows, ncols) = self.lu.data.shape();
let mut res = MatrixN::identity_generic(nrows, ncols);
if self.try_inverse_to(&mut res) {
Some(res)
} else {
None
}
}
/// Computes the inverse of the decomposed matrix and outputs the result to `out`.
///
/// If the decomposed matrix is not invertible, this returns `false` and `out` may be
/// overwritten with garbage.
pub fn try_inverse_to<S2: StorageMut<N, D, D>>(&self, out: &mut Matrix<N, D, D, S2>) -> bool {
assert!(
self.lu.is_square(),
"LU inverse: unable to compute the inverse of a non-square matrix."
);
assert!(
self.lu.shape() == out.shape(),
"LU inverse: mismatched output shape."
);
out.fill_with_identity();
self.solve_mut(out)
}
/// Computes the determinant of the decomposed matrix.
pub fn determinant(&self) -> N {
let dim = self.lu.nrows();
assert!(
self.lu.is_square(),
"LU determinant: unable to compute the determinant of a non-square matrix."
);
let mut res = N::one();
for i in 0..dim {
res *= unsafe { *self.lu.get_unchecked((i, i)) };
}
res * self.p.determinant()
}
/// Indicates if the decomposed matrix is invertible.
pub fn is_invertible(&self) -> bool {
assert!(
self.lu.is_square(),
"QR: unable to test the invertibility of a non-square matrix."
);
for i in 0..self.lu.nrows() {
if self.lu[(i, i)].is_zero() {
return false;
}
}
true
}
}
#[doc(hidden)]
/// Executes one step of gaussian elimination on the i-th row and column of `matrix`. The diagonal
/// element `matrix[(i, i)]` is provided as argument.
pub fn gauss_step<N, R: Dim, C: Dim, S>(matrix: &mut Matrix<N, R, C, S>, diag: N, i: usize)
where
N: Scalar + Field,
S: StorageMut<N, R, C>,
{
let mut submat = matrix.slice_range_mut(i.., i..);
let inv_diag = N::one() / diag;
let (mut coeffs, mut submat) = submat.columns_range_pair_mut(0, 1..);
let mut coeffs = coeffs.rows_range_mut(1..);
coeffs *= inv_diag;
let (pivot_row, mut down) = submat.rows_range_pair_mut(0, 1..);
for k in 0..pivot_row.ncols() {
down.column_mut(k).axpy(-pivot_row[k], &coeffs, N::one());
}
}
#[doc(hidden)]
/// Swaps the rows `i` with the row `piv` and executes one step of gaussian elimination on the i-th
/// row and column of `matrix`. The diagonal element `matrix[(i, i)]` is provided as argument.
pub fn gauss_step_swap<N, R: Dim, C: Dim, S>(
matrix: &mut Matrix<N, R, C, S>,
diag: N,
i: usize,
piv: usize,
) where
N: Scalar + Field,
S: StorageMut<N, R, C>,
{
let piv = piv - i;
let mut submat = matrix.slice_range_mut(i.., i..);
let inv_diag = N::one() / diag;
let (mut coeffs, mut submat) = submat.columns_range_pair_mut(0, 1..);
coeffs.swap((0, 0), (piv, 0));
let mut coeffs = coeffs.rows_range_mut(1..);
coeffs *= inv_diag;
let (mut pivot_row, mut down) = submat.rows_range_pair_mut(0, 1..);
for k in 0..pivot_row.ncols() {
mem::swap(&mut pivot_row[k], &mut down[(piv - 1, k)]);
down.column_mut(k).axpy(-pivot_row[k], &coeffs, N::one());
}
}
impl<N: Real, R: DimMin<C>, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S>
where DefaultAllocator: Allocator<N, R, C> + Allocator<(usize, usize), DimMinimum<R, C>>
{
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
pub fn lu(self) -> LU<N, R, C> {
LU::new(self.into_owned())
}
}