nalgebra/src/geometry/unit_complex.rs

190 lines
4.9 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num_complex::Complex;
use std::fmt;
use alga::general::Real;
use base::{Matrix2, Matrix3, Unit, Vector1};
use geometry::Rotation2;
/// A complex number with a norm equal to 1.
pub type UnitComplex<N> = Unit<Complex<N>>;
impl<N: Real> UnitComplex<N> {
/// The rotation angle in `]-pi; pi]` of this unit complex number.
#[inline]
pub fn angle(&self) -> N {
self.im.atan2(self.re)
}
/// The sine of the rotation angle.
#[inline]
pub fn sin_angle(&self) -> N {
self.im
}
/// The cosine of the rotation angle.
#[inline]
pub fn cos_angle(&self) -> N {
self.re
}
/// The rotation angle returned as a 1-dimensional vector.
#[inline]
pub fn scaled_axis(&self) -> Vector1<N> {
Vector1::new(self.angle())
}
/// The rotation axis and angle in ]0, pi] of this complex number.
///
/// Returns `None` if the angle is zero.
#[inline]
pub fn axis_angle(&self) -> Option<(Unit<Vector1<N>>, N)> {
let ang = self.angle();
if ang.is_zero() {
None
} else if ang.is_sign_negative() {
Some((Unit::new_unchecked(Vector1::x()), -ang))
} else {
Some((Unit::new_unchecked(-Vector1::<N>::x()), ang))
}
}
/// The underlying complex number.
///
/// Same as `self.as_ref()`.
#[inline]
pub fn complex(&self) -> &Complex<N> {
self.as_ref()
}
/// Compute the conjugate of this unit complex number.
#[inline]
pub fn conjugate(&self) -> Self {
UnitComplex::new_unchecked(self.conj())
}
/// Inverts this complex number if it is not zero.
#[inline]
pub fn inverse(&self) -> Self {
self.conjugate()
}
/// The rotation angle needed to make `self` and `other` coincide.
#[inline]
pub fn angle_to(&self, other: &Self) -> N {
let delta = self.rotation_to(other);
delta.angle()
}
/// The unit complex number needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
#[inline]
pub fn rotation_to(&self, other: &Self) -> Self {
other / self
}
/// Compute in-place the conjugate of this unit complex number.
#[inline]
pub fn conjugate_mut(&mut self) {
let me = self.as_mut_unchecked();
me.im = -me.im;
}
/// Inverts in-place this unit complex number.
#[inline]
pub fn inverse_mut(&mut self) {
self.conjugate_mut()
}
/// Raise this unit complex number to a given floating power.
///
/// This returns the unit complex number that identifies a rotation angle equal to
/// `self.angle() × n`.
#[inline]
pub fn powf(&self, n: N) -> Self {
Self::from_angle(self.angle() * n)
}
/// Builds the rotation matrix corresponding to this unit complex number.
#[inline]
pub fn to_rotation_matrix(&self) -> Rotation2<N> {
let r = self.re;
let i = self.im;
Rotation2::from_matrix_unchecked(Matrix2::new(r, -i, i, r))
}
/// Converts this unit complex number into its equivalent homogeneous transformation matrix.
#[inline]
pub fn to_homogeneous(&self) -> Matrix3<N> {
self.to_rotation_matrix().to_homogeneous()
}
}
impl<N: Real + fmt::Display> fmt::Display for UnitComplex<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "UnitComplex angle: {}", self.angle())
}
}
impl<N: Real> AbsDiffEq for UnitComplex<N> {
type Epsilon = N;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.re.abs_diff_eq(&other.re, epsilon) && self.im.abs_diff_eq(&other.im, epsilon)
}
}
impl<N: Real> RelativeEq for UnitComplex<N> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.re.relative_eq(&other.re, epsilon, max_relative)
&& self.im.relative_eq(&other.im, epsilon, max_relative)
}
}
impl<N: Real> UlpsEq for UnitComplex<N> {
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.re.ulps_eq(&other.re, epsilon, max_ulps)
&& self.im.ulps_eq(&other.im, epsilon, max_ulps)
}
}
impl<N: Real> From<UnitComplex<N>> for Matrix3<N> {
#[inline]
fn from(q: UnitComplex<N>) -> Matrix3<N> {
q.to_homogeneous()
}
}
impl<N: Real> From<UnitComplex<N>> for Matrix2<N> {
#[inline]
fn from(q: UnitComplex<N>) -> Matrix2<N> {
q.to_rotation_matrix().unwrap()
}
}