516 lines
13 KiB
Rust
516 lines
13 KiB
Rust
/*!
|
||
# nalgebra
|
||
|
||
**nalgebra** is a linear algebra library written for Rust targeting:
|
||
|
||
* General-purpose linear algebra (still lacks a lot of features…)
|
||
* Real time computer graphics.
|
||
* Real time computer physics.
|
||
|
||
## Using **nalgebra**
|
||
You will need the last stable build of the [rust compiler](http://www.rust-lang.org)
|
||
and the official package manager: [cargo](https://github.com/rust-lang/cargo).
|
||
|
||
Simply add the following to your `Cargo.toml` file:
|
||
|
||
```.ignore
|
||
[dependencies]
|
||
nalgebra = "0.16"
|
||
```
|
||
|
||
|
||
Most useful functionalities of **nalgebra** are grouped in the root module `nalgebra::`.
|
||
|
||
However, the recommended way to use **nalgebra** is to import types and traits
|
||
explicitly, and call free-functions using the `na::` prefix:
|
||
|
||
```.rust
|
||
#[macro_use]
|
||
extern crate approx; // For the macro relative_eq!
|
||
extern crate nalgebra as na;
|
||
use na::{Vector3, Rotation3};
|
||
|
||
fn main() {
|
||
let axis = Vector3::x_axis();
|
||
let angle = 1.57;
|
||
let b = Rotation3::from_axis_angle(&axis, angle);
|
||
|
||
relative_eq!(b.axis().unwrap(), axis);
|
||
relative_eq!(b.angle(), angle);
|
||
}
|
||
```
|
||
|
||
|
||
## Features
|
||
**nalgebra** is meant to be a general-purpose, low-dimensional, linear algebra library, with
|
||
an optimized set of tools for computer graphics and physics. Those features include:
|
||
|
||
* A single parametrizable type `Matrix` for vectors, (square or rectangular) matrices, and slices
|
||
with dimensions known either at compile-time (using type-level integers) or at runtime.
|
||
* Matrices and vectors with compile-time sizes are statically allocated while dynamic ones are
|
||
allocated on the heap.
|
||
* Convenient aliases for low-dimensional matrices and vectors: `Vector1` to `Vector6` and
|
||
`Matrix1x1` to `Matrix6x6`, including rectangular matrices like `Matrix2x5`.
|
||
* Points sizes known at compile time, and convenience aliases: `Point1` to `Point6`.
|
||
* Translation (seen as a transformation that composes by multiplication): `Translation2`,
|
||
`Translation3`.
|
||
* Rotation matrices: `Rotation2`, `Rotation3`.
|
||
* Quaternions: `Quaternion`, `UnitQuaternion` (for 3D rotation).
|
||
* Unit complex numbers can be used for 2D rotation: `UnitComplex`.
|
||
* Algebraic entities with a norm equal to one: `Unit<T>`, e.g., `Unit<Vector3<f32>>`.
|
||
* Isometries (translation ⨯ rotation): `Isometry2`, `Isometry3`
|
||
* Similarity transformations (translation ⨯ rotation ⨯ uniform scale): `Similarity2`, `Similarity3`.
|
||
* Affine transformations stored as an homogeneous matrix: `Affine2`, `Affine3`.
|
||
* Projective (i.e. invertible) transformations stored as an homogeneous matrix: `Projective2`,
|
||
`Projective3`.
|
||
* General transformations that does not have to be invertible, stored as an homogeneous matrix:
|
||
`Transform2`, `Transform3`.
|
||
* 3D projections for computer graphics: `Perspective3`, `Orthographic3`.
|
||
* Matrix factorizations: `Cholesky`, `QR`, `LU`, `FullPivLU`, `SVD`, `RealSchur`, `Hessenberg`, `SymmetricEigen`.
|
||
* Insertion and removal of rows of columns of a matrix.
|
||
* Implements traits from the [alga](https://crates.io/crates/alga) crate for
|
||
generic programming.
|
||
*/
|
||
|
||
// #![feature(plugin)]
|
||
//
|
||
// #![plugin(clippy)]
|
||
|
||
#![deny(non_camel_case_types)]
|
||
#![deny(unused_parens)]
|
||
#![deny(non_upper_case_globals)]
|
||
#![deny(unused_qualifications)]
|
||
#![deny(unused_results)]
|
||
#![deny(missing_docs)]
|
||
#![warn(incoherent_fundamental_impls)]
|
||
#![doc(html_root_url = "http://nalgebra.org/rustdoc")]
|
||
#![cfg_attr(not(feature = "std"), no_std)]
|
||
#![cfg_attr(all(feature = "alloc", not(feature = "std")), feature(alloc))]
|
||
|
||
#[cfg(feature = "arbitrary")]
|
||
extern crate quickcheck;
|
||
|
||
#[cfg(feature = "serde")]
|
||
extern crate serde;
|
||
#[cfg(feature = "serde")]
|
||
#[macro_use]
|
||
extern crate serde_derive;
|
||
|
||
#[cfg(feature = "abomonation-serialize")]
|
||
extern crate abomonation;
|
||
|
||
#[cfg(feature = "mint")]
|
||
extern crate mint;
|
||
|
||
#[macro_use]
|
||
extern crate approx;
|
||
extern crate generic_array;
|
||
#[cfg(feature = "std")]
|
||
extern crate matrixmultiply;
|
||
extern crate num_complex;
|
||
extern crate num_traits as num;
|
||
extern crate rand;
|
||
extern crate typenum;
|
||
|
||
extern crate alga;
|
||
|
||
#[cfg(all(feature = "alloc", not(feature = "std")))]
|
||
extern crate alloc;
|
||
|
||
#[cfg(not(feature = "std"))]
|
||
extern crate core as std;
|
||
|
||
pub mod base;
|
||
#[cfg(feature = "debug")]
|
||
pub mod debug;
|
||
pub mod geometry;
|
||
pub mod linalg;
|
||
|
||
#[cfg(feature = "std")]
|
||
#[deprecated(
|
||
note = "The 'core' module is being renamed 'based' to avoid conflicts with the 'core' crate."
|
||
)]
|
||
pub use base as core;
|
||
pub use base::*;
|
||
pub use geometry::*;
|
||
pub use linalg::*;
|
||
|
||
use std::cmp::{self, Ordering, PartialOrd};
|
||
|
||
use alga::general::{
|
||
Additive, AdditiveGroup, Identity, Inverse, JoinSemilattice, Lattice, MeetSemilattice,
|
||
Multiplicative, SupersetOf,
|
||
};
|
||
use alga::linear::SquareMatrix as AlgaSquareMatrix;
|
||
use alga::linear::{EuclideanSpace, FiniteDimVectorSpace, InnerSpace, NormedSpace};
|
||
use num::Signed;
|
||
|
||
pub use alga::general::{Id, Real};
|
||
|
||
/*
|
||
*
|
||
* Multiplicative identity.
|
||
*
|
||
*/
|
||
/// Gets the ubiquitous multiplicative identity element.
|
||
///
|
||
/// Same as `Id::new()`.
|
||
#[inline]
|
||
pub fn id() -> Id {
|
||
Id::new()
|
||
}
|
||
|
||
/// Gets the multiplicative identity element.
|
||
#[inline]
|
||
pub fn one<T: Identity<Multiplicative>>() -> T {
|
||
T::identity()
|
||
}
|
||
|
||
/// Gets the additive identity element.
|
||
#[inline]
|
||
pub fn zero<T: Identity<Additive>>() -> T {
|
||
T::identity()
|
||
}
|
||
|
||
/// Gets the origin of the given point.
|
||
#[inline]
|
||
pub fn origin<P: EuclideanSpace>() -> P {
|
||
P::origin()
|
||
}
|
||
|
||
/*
|
||
*
|
||
* Dimension
|
||
*
|
||
*/
|
||
/// The dimension of the given algebraic entity seen as a vector space.
|
||
#[inline]
|
||
pub fn dimension<V: FiniteDimVectorSpace>() -> usize {
|
||
V::dimension()
|
||
}
|
||
|
||
/*
|
||
*
|
||
* Ordering
|
||
*
|
||
*/
|
||
// XXX: this is very naive and could probably be optimized for specific types.
|
||
// XXX: also, we might just want to use divisions, but assuming `val` is usually not far from `min`
|
||
// or `max`, would it still be more efficient?
|
||
/// Wraps `val` into the range `[min, max]` using modular arithmetics.
|
||
///
|
||
/// The range must not be empty.
|
||
#[inline]
|
||
pub fn wrap<T>(mut val: T, min: T, max: T) -> T
|
||
where
|
||
T: Copy + PartialOrd + AdditiveGroup,
|
||
{
|
||
assert!(min < max, "Invalid wrapping bounds.");
|
||
let width = max - min;
|
||
|
||
if val < min {
|
||
val += width;
|
||
|
||
while val < min {
|
||
val += width
|
||
}
|
||
|
||
val
|
||
} else if val > max {
|
||
val -= width;
|
||
|
||
while val > max {
|
||
val -= width
|
||
}
|
||
|
||
val
|
||
} else {
|
||
val
|
||
}
|
||
}
|
||
|
||
/// Returns a reference to the input value clamped to the interval `[min, max]`.
|
||
///
|
||
/// In particular:
|
||
/// * If `min < val < max`, this returns `val`.
|
||
/// * If `val <= min`, this returns `min`.
|
||
/// * If `val >= max`, this returns `max`.
|
||
#[inline]
|
||
pub fn clamp<T: PartialOrd>(val: T, min: T, max: T) -> T {
|
||
if val > min {
|
||
if val < max {
|
||
val
|
||
} else {
|
||
max
|
||
}
|
||
} else {
|
||
min
|
||
}
|
||
}
|
||
|
||
/// Same as `cmp::max`.
|
||
#[inline]
|
||
pub fn max<T: Ord>(a: T, b: T) -> T {
|
||
cmp::max(a, b)
|
||
}
|
||
|
||
/// Same as `cmp::min`.
|
||
#[inline]
|
||
pub fn min<T: Ord>(a: T, b: T) -> T {
|
||
cmp::min(a, b)
|
||
}
|
||
|
||
/// The absolute value of `a`.
|
||
#[inline]
|
||
pub fn abs<T: Signed>(a: &T) -> T {
|
||
a.abs()
|
||
}
|
||
|
||
/// Returns the infimum of `a` and `b`.
|
||
#[inline]
|
||
pub fn inf<T: MeetSemilattice>(a: &T, b: &T) -> T {
|
||
a.meet(b)
|
||
}
|
||
|
||
/// Returns the supremum of `a` and `b`.
|
||
#[inline]
|
||
pub fn sup<T: JoinSemilattice>(a: &T, b: &T) -> T {
|
||
a.join(b)
|
||
}
|
||
|
||
/// Returns simultaneously the infimum and supremum of `a` and `b`.
|
||
#[inline]
|
||
pub fn inf_sup<T: Lattice>(a: &T, b: &T) -> (T, T) {
|
||
a.meet_join(b)
|
||
}
|
||
|
||
/// Compare `a` and `b` using a partial ordering relation.
|
||
#[inline]
|
||
pub fn partial_cmp<T: PartialOrd>(a: &T, b: &T) -> Option<Ordering> {
|
||
a.partial_cmp(b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a < b`.
|
||
#[inline]
|
||
pub fn partial_lt<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||
a.lt(b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
|
||
#[inline]
|
||
pub fn partial_le<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||
a.le(b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a > b`.
|
||
#[inline]
|
||
pub fn partial_gt<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||
a.gt(b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
|
||
#[inline]
|
||
pub fn partial_ge<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||
a.ge(b)
|
||
}
|
||
|
||
/// Return the minimum of `a` and `b` if they are comparable.
|
||
#[inline]
|
||
pub fn partial_min<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||
if let Some(ord) = a.partial_cmp(b) {
|
||
match ord {
|
||
Ordering::Greater => Some(b),
|
||
_ => Some(a),
|
||
}
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/// Return the maximum of `a` and `b` if they are comparable.
|
||
#[inline]
|
||
pub fn partial_max<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||
if let Some(ord) = a.partial_cmp(b) {
|
||
match ord {
|
||
Ordering::Less => Some(b),
|
||
_ => Some(a),
|
||
}
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
|
||
/// `min` or `max`.
|
||
#[inline]
|
||
pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> {
|
||
if let (Some(cmp_min), Some(cmp_max)) = (value.partial_cmp(min), value.partial_cmp(max)) {
|
||
if cmp_min == Ordering::Less {
|
||
Some(min)
|
||
} else if cmp_max == Ordering::Greater {
|
||
Some(max)
|
||
} else {
|
||
Some(value)
|
||
}
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/// Sorts two values in increasing order using a partial ordering.
|
||
#[inline]
|
||
pub fn partial_sort2<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<(&'a T, &'a T)> {
|
||
if let Some(ord) = a.partial_cmp(b) {
|
||
match ord {
|
||
Ordering::Less => Some((a, b)),
|
||
_ => Some((b, a)),
|
||
}
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Inverse
|
||
*/
|
||
|
||
/// Tries to gets an inverted copy of a square matrix.
|
||
#[inline]
|
||
pub fn try_inverse<M: AlgaSquareMatrix>(m: &M) -> Option<M> {
|
||
m.try_inverse()
|
||
}
|
||
|
||
/// Computes the multiplicative inverse of an (always invertible) algebraic entity.
|
||
#[inline]
|
||
pub fn inverse<M: Inverse<Multiplicative>>(m: &M) -> M {
|
||
m.inverse()
|
||
}
|
||
|
||
/*
|
||
* Inner vector space
|
||
*/
|
||
|
||
/// Computes the dot product of two vectors.
|
||
#[inline]
|
||
pub fn dot<V: FiniteDimVectorSpace>(a: &V, b: &V) -> V::Field {
|
||
a.dot(b)
|
||
}
|
||
|
||
/// Computes the smallest angle between two vectors.
|
||
#[inline]
|
||
pub fn angle<V: InnerSpace>(a: &V, b: &V) -> V::Real {
|
||
a.angle(b)
|
||
}
|
||
|
||
/*
|
||
* Normed space
|
||
*/
|
||
|
||
/// Computes the L2 (euclidean) norm of a vector.
|
||
#[inline]
|
||
pub fn norm<V: NormedSpace>(v: &V) -> V::Field {
|
||
v.norm()
|
||
}
|
||
|
||
/// Computes the squared L2 (euclidean) norm of the vector `v`.
|
||
#[inline]
|
||
pub fn norm_squared<V: NormedSpace>(v: &V) -> V::Field {
|
||
v.norm_squared()
|
||
}
|
||
|
||
/// A synonym function for `norm()` aka length.
|
||
#[inline]
|
||
pub fn magnitude<V: NormedSpace>(v: &V) -> V::Field {
|
||
v.norm()
|
||
}
|
||
|
||
/// A synonym function for `norm_squared()` aka length squared.
|
||
#[inline]
|
||
pub fn magnitude_squared<V: NormedSpace>(v: &V) -> V::Field {
|
||
v.norm_squared()
|
||
}
|
||
|
||
/// Computes the normalized version of the vector `v`.
|
||
#[inline]
|
||
pub fn normalize<V: NormedSpace>(v: &V) -> V {
|
||
v.normalize()
|
||
}
|
||
|
||
/// Computes the normalized version of the vector `v` or returns `None` if its norm is smaller than `min_norm`.
|
||
#[inline]
|
||
pub fn try_normalize<V: NormedSpace>(v: &V, min_norm: V::Field) -> Option<V> {
|
||
v.try_normalize(min_norm)
|
||
}
|
||
|
||
/*
|
||
*
|
||
* Point operations.
|
||
*
|
||
*/
|
||
/// The center of two points.
|
||
#[inline]
|
||
pub fn center<P: EuclideanSpace>(p1: &P, p2: &P) -> P {
|
||
P::from_coordinates((p1.coordinates() + p2.coordinates()) * convert(0.5))
|
||
}
|
||
|
||
/// The distance between two points.
|
||
#[inline]
|
||
pub fn distance<P: EuclideanSpace>(p1: &P, p2: &P) -> P::Real {
|
||
(p2.coordinates() - p1.coordinates()).norm()
|
||
}
|
||
|
||
/// The squared distance between two points.
|
||
#[inline]
|
||
pub fn distance_squared<P: EuclideanSpace>(p1: &P, p2: &P) -> P::Real {
|
||
(p2.coordinates() - p1.coordinates()).norm_squared()
|
||
}
|
||
|
||
/*
|
||
* Cast
|
||
*/
|
||
/// Converts an object from one type to an equivalent or more general one.
|
||
///
|
||
/// See also `::try_convert` for conversion to more specific types.
|
||
#[inline]
|
||
pub fn convert<From, To: SupersetOf<From>>(t: From) -> To {
|
||
To::from_subset(&t)
|
||
}
|
||
|
||
/// Attempts to convert an object to a more specific one.
|
||
///
|
||
/// See also `::convert` for conversion to more general types.
|
||
#[inline]
|
||
pub fn try_convert<From: SupersetOf<To>, To>(t: From) -> Option<To> {
|
||
t.to_subset()
|
||
}
|
||
|
||
/// Indicates if `::try_convert` will succeed without actually performing the conversion.
|
||
#[inline]
|
||
pub fn is_convertible<From: SupersetOf<To>, To>(t: &From) -> bool {
|
||
t.is_in_subset()
|
||
}
|
||
|
||
/// Use with care! Same as `try_convert` but without any property checks.
|
||
#[inline]
|
||
pub unsafe fn convert_unchecked<From: SupersetOf<To>, To>(t: From) -> To {
|
||
t.to_subset_unchecked()
|
||
}
|
||
|
||
/// Converts an object from one type to an equivalent or more general one.
|
||
#[inline]
|
||
pub fn convert_ref<From, To: SupersetOf<From>>(t: &From) -> To {
|
||
To::from_subset(t)
|
||
}
|
||
|
||
/// Attempts to convert an object to a more specific one.
|
||
#[inline]
|
||
pub fn try_convert_ref<From: SupersetOf<To>, To>(t: &From) -> Option<To> {
|
||
t.to_subset()
|
||
}
|
||
|
||
/// Use with care! Same as `try_convert` but without any property checks.
|
||
#[inline]
|
||
pub unsafe fn convert_ref_unchecked<From: SupersetOf<To>, To>(t: &From) -> To {
|
||
t.to_subset_unchecked()
|
||
}
|