nalgebra/src/geometry/translation_conversion.rs
Crozet Sébastien 65b94ccb91 Add more conversions for translations
Add [T; D] <-> Translation<T, D>
Add Point<T, D> -> Translation<T, D>
2021-04-27 13:17:51 +02:00

309 lines
8.8 KiB
Rust

use num::{One, Zero};
use simba::scalar::{RealField, SubsetOf, SupersetOf};
use simba::simd::PrimitiveSimdValue;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::{Const, DefaultAllocator, DimName, OMatrix, OVector, SVector, Scalar};
use crate::geometry::{
AbstractRotation, Isometry, Similarity, SuperTCategoryOf, TAffine, Transform, Translation,
Translation3, UnitDualQuaternion, UnitQuaternion,
};
use crate::Point;
/*
* This file provides the following conversions:
* =============================================
*
* Translation -> Translation
* Translation -> Isometry
* Translation3 -> UnitDualQuaternion
* Translation -> Similarity
* Translation -> Transform
* Translation -> Matrix (homogeneous)
*/
impl<T1, T2, const D: usize> SubsetOf<Translation<T2, D>> for Translation<T1, D>
where
T1: Scalar,
T2: Scalar + SupersetOf<T1>,
{
#[inline]
fn to_superset(&self) -> Translation<T2, D> {
Translation::from(self.vector.to_superset())
}
#[inline]
fn is_in_subset(rot: &Translation<T2, D>) -> bool {
crate::is_convertible::<_, SVector<T1, D>>(&rot.vector)
}
#[inline]
fn from_superset_unchecked(rot: &Translation<T2, D>) -> Self {
Translation {
vector: rot.vector.to_subset_unchecked(),
}
}
}
impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Translation<T1, D>
where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D>,
{
#[inline]
fn to_superset(&self) -> Isometry<T2, R, D> {
Isometry::from_parts(self.to_superset(), R::identity())
}
#[inline]
fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool {
iso.rotation == R::identity()
}
#[inline]
fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self {
Self::from_superset_unchecked(&iso.translation)
}
}
impl<T1, T2> SubsetOf<UnitDualQuaternion<T2>> for Translation3<T1>
where
T1: RealField,
T2: RealField + SupersetOf<T1>,
{
#[inline]
fn to_superset(&self) -> UnitDualQuaternion<T2> {
let dq = UnitDualQuaternion::<T1>::from_parts(self.clone(), UnitQuaternion::identity());
dq.to_superset()
}
#[inline]
fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool {
crate::is_convertible::<_, Translation<T1, 3>>(&dq.translation())
&& dq.rotation() == UnitQuaternion::identity()
}
#[inline]
fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self {
let dq: UnitDualQuaternion<T1> = crate::convert_ref_unchecked(dq);
dq.translation()
}
}
impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D>
where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T2, D>,
{
#[inline]
fn to_superset(&self) -> Similarity<T2, R, D> {
Similarity::from_parts(self.to_superset(), R::identity(), T2::one())
}
#[inline]
fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool {
sim.isometry.rotation == R::identity() && sim.scaling() == T2::one()
}
#[inline]
fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self {
Self::from_superset_unchecked(&sim.isometry.translation)
}
}
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Translation<T1, D>
where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
+ Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
{
#[inline]
fn to_superset(&self) -> Transform<T2, C, D> {
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<T2, C, D>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<T1, T2, const D: usize>
SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> for Translation<T1, D>
where
T1: RealField,
T2: RealField + SupersetOf<T1>,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
+ Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
// + Allocator<T1, D>
// + Allocator<T2, D>
{
#[inline]
fn to_superset(&self) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>) -> bool {
let id = m.generic_slice((0, 0), (DimNameSum::<Const<D>, U1>::name(), Const::<D>));
// Scalar types agree.
m.iter().all(|e| SupersetOf::<T1>::is_in_subset(e)) &&
// The block part does nothing.
id.is_identity(T2::zero()) &&
// The normalization factor is one.
m[(D, D)] == T2::one()
}
#[inline]
fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
) -> Self {
let t = m.fixed_slice::<D, 1>(0, D);
Self {
vector: crate::convert_unchecked(t.into_owned()),
}
}
}
impl<T: Scalar + Zero + One, const D: usize> From<Translation<T, D>>
for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
where
Const<D>: DimNameAdd<U1>,
DefaultAllocator:
Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T, Const<D>>,
{
#[inline]
fn from(t: Translation<T, D>) -> Self {
t.to_homogeneous()
}
}
impl<T: Scalar, const D: usize> From<OVector<T, Const<D>>> for Translation<T, D> {
#[inline]
fn from(vector: OVector<T, Const<D>>) -> Self {
Translation { vector }
}
}
impl<T: Scalar, const D: usize> From<[T; D]> for Translation<T, D> {
#[inline]
fn from(coords: [T; D]) -> Self {
Translation {
vector: coords.into(),
}
}
}
impl<T: Scalar, const D: usize> From<Point<T, D>> for Translation<T, D> {
#[inline]
fn from(pt: Point<T, D>) -> Self {
Translation {
vector: pt.coords.into(),
}
}
}
impl<T: Scalar, const D: usize> Into<[T; D]> for Translation<T, D> {
#[inline]
fn into(self) -> [T; D] {
self.vector.into()
}
}
impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Translation<T::Element, D>; 2]>
for Translation<T, D>
where
T: From<[<T as simba::simd::SimdValue>::Element; 2]>,
T::Element: Scalar,
{
#[inline]
fn from(arr: [Translation<T::Element, D>; 2]) -> Self {
Self::from(OVector::from([
arr[0].vector.clone(),
arr[1].vector.clone(),
]))
}
}
impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Translation<T::Element, D>; 4]>
for Translation<T, D>
where
T: From<[<T as simba::simd::SimdValue>::Element; 4]>,
T::Element: Scalar,
{
#[inline]
fn from(arr: [Translation<T::Element, D>; 4]) -> Self {
Self::from(OVector::from([
arr[0].vector.clone(),
arr[1].vector.clone(),
arr[2].vector.clone(),
arr[3].vector.clone(),
]))
}
}
impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Translation<T::Element, D>; 8]>
for Translation<T, D>
where
T: From<[<T as simba::simd::SimdValue>::Element; 8]>,
T::Element: Scalar,
{
#[inline]
fn from(arr: [Translation<T::Element, D>; 8]) -> Self {
Self::from(OVector::from([
arr[0].vector.clone(),
arr[1].vector.clone(),
arr[2].vector.clone(),
arr[3].vector.clone(),
arr[4].vector.clone(),
arr[5].vector.clone(),
arr[6].vector.clone(),
arr[7].vector.clone(),
]))
}
}
impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Translation<T::Element, D>; 16]>
for Translation<T, D>
where
T: From<[<T as simba::simd::SimdValue>::Element; 16]>,
T::Element: Scalar,
{
#[inline]
fn from(arr: [Translation<T::Element, D>; 16]) -> Self {
Self::from(OVector::from([
arr[0].vector.clone(),
arr[1].vector.clone(),
arr[2].vector.clone(),
arr[3].vector.clone(),
arr[4].vector.clone(),
arr[5].vector.clone(),
arr[6].vector.clone(),
arr[7].vector.clone(),
arr[8].vector.clone(),
arr[9].vector.clone(),
arr[10].vector.clone(),
arr[11].vector.clone(),
arr[12].vector.clone(),
arr[13].vector.clone(),
arr[14].vector.clone(),
arr[15].vector.clone(),
]))
}
}