nalgebra/src/sparse/cs_matrix.rs
2018-10-20 22:26:44 +02:00

486 lines
14 KiB
Rust

use alga::general::{ClosedAdd, ClosedMul};
use num::{One, Zero};
use std::marker::PhantomData;
use std::ops::{Add, Mul, Range};
use allocator::Allocator;
use constraint::{AreMultipliable, DimEq, ShapeConstraint};
use storage::{Storage, StorageMut};
use {DefaultAllocator, Dim, Matrix, MatrixMN, Scalar, Vector, VectorN, U1};
pub trait CsStorage<N, R, C = U1> {
fn shape(&self) -> (R, C);
fn nvalues(&self) -> usize;
unsafe fn row_index_unchecked(&self, i: usize) -> usize;
unsafe fn get_value_unchecked(&self, i: usize) -> &N;
fn get_value(&self, i: usize) -> &N;
fn row_index(&self, i: usize) -> usize;
fn column_range(&self, j: usize) -> Range<usize>;
}
pub trait CsStorageMut<N, R, C = U1>: CsStorage<N, R, C> {
/*
/// Sets the length of this column without initializing its values and row indices.
///
/// If the given length is larger than the current one, uninitialized entries are
/// added at the end of the column `i`. This will effectively shift all the matrix entries
/// of the columns at indices `j` with `j > i`. Therefore this is a `O(n)` operation.
/// This is unsafe as the row indices on newly created components may end up being out
/// of bounds.
unsafe fn set_column_len(&mut self, i: usize, len: usize);
*/
}
#[derive(Clone, Debug)]
pub struct CsVecStorage<N: Scalar, R: Dim, C: Dim>
where
DefaultAllocator: Allocator<usize, C>,
{
shape: (R, C),
p: VectorN<usize, C>,
i: Vec<usize>,
vals: Vec<N>,
}
impl<N: Scalar, R: Dim, C: Dim> CsStorage<N, R, C> for CsVecStorage<N, R, C>
where
DefaultAllocator: Allocator<usize, C>,
{
#[inline]
fn shape(&self) -> (R, C) {
self.shape
}
#[inline]
fn nvalues(&self) -> usize {
self.vals.len()
}
#[inline]
fn column_range(&self, j: usize) -> Range<usize> {
let end = if j + 1 == self.p.len() {
self.nvalues()
} else {
self.p[j + 1]
};
self.p[j]..end
}
#[inline]
fn row_index(&self, i: usize) -> usize {
self.i[i]
}
#[inline]
unsafe fn row_index_unchecked(&self, i: usize) -> usize {
*self.i.get_unchecked(i)
}
#[inline]
unsafe fn get_value_unchecked(&self, i: usize) -> &N {
self.vals.get_unchecked(i)
}
#[inline]
fn get_value(&self, i: usize) -> &N {
&self.vals[i]
}
}
/*
pub struct CsSliceStorage<'a, N: Scalar, R: Dim, C: DimAdd<U1>> {
shape: (R, C),
p: VectorSlice<usize, DimSum<C, U1>>,
i: VectorSlice<usize, Dynamic>,
vals: VectorSlice<N, Dynamic>,
}*/
/// A compressed sparse column matrix.
#[derive(Clone, Debug)]
pub struct CsMatrix<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C> = CsVecStorage<N, R, C>> {
pub data: S,
_phantoms: PhantomData<(N, R, C)>,
}
pub type CsVector<N, R, S> = CsMatrix<N, R, U1, S>;
impl<N: Scalar, R: Dim, C: Dim> CsMatrix<N, R, C>
where
DefaultAllocator: Allocator<usize, C>,
{
pub fn new_uninitialized_generic(nrows: R, ncols: C, nvals: usize) -> Self {
let mut i = Vec::with_capacity(nvals);
unsafe {
i.set_len(nvals);
}
i.shrink_to_fit();
let mut vals = Vec::with_capacity(nvals);
unsafe {
vals.set_len(nvals);
}
vals.shrink_to_fit();
CsMatrix {
data: CsVecStorage {
shape: (nrows, ncols),
p: unsafe { VectorN::new_uninitialized_generic(ncols, U1) },
i,
vals,
},
_phantoms: PhantomData,
}
}
}
fn cumsum<D: Dim>(a: &mut VectorN<usize, D>, b: &mut VectorN<usize, D>) -> usize
where
DefaultAllocator: Allocator<usize, D>,
{
assert!(a.len() == b.len());
let mut sum = 0;
for i in 0..a.len() {
b[i] = sum;
sum += a[i];
a[i] = b[i];
}
sum
}
impl<N: Scalar, R: Dim, C: Dim, S: CsStorage<N, R, C>> CsMatrix<N, R, C, S> {
pub fn nvalues(&self) -> usize {
self.data.nvalues()
}
pub fn transpose(&self) -> CsMatrix<N, C, R>
where
DefaultAllocator: Allocator<usize, R>,
{
let (nrows, ncols) = self.data.shape();
let nvals = self.nvalues();
let mut res = CsMatrix::new_uninitialized_generic(ncols, nrows, nvals);
let mut workspace = Vector::zeros_generic(nrows, U1);
// Compute p.
for i in 0..nvals {
let row_id = self.data.row_index(i);
workspace[row_id] += 1;
}
let _ = cumsum(&mut workspace, &mut res.data.p);
// Fill the result.
for j in 0..ncols.value() {
let column_idx = self.data.column_range(j);
for vi in column_idx {
let row_id = self.data.row_index(vi);
let shift = workspace[row_id];
res.data.vals[shift] = *self.data.get_value(vi);
res.data.i[shift] = j;
workspace[row_id] += 1;
}
}
res
}
fn scatter<R2: Dim, C2: Dim>(
&self,
j: usize,
beta: N,
timestamps: &mut [usize],
timestamp: usize,
workspace: &mut [N],
mut nz: usize,
res: &mut CsMatrix<N, R2, C2>,
) -> usize
where
N: ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<usize, C2>,
{
let column_idx = self.data.column_range(j);
for vi in column_idx {
let i = self.data.row_index(vi);
let val = beta * *self.data.get_value(vi);
if timestamps[i] < timestamp {
timestamps[i] = timestamp;
res.data.i[nz] = i;
nz += 1;
workspace[i] = val;
} else {
workspace[i] += val;
}
}
nz
}
}
/*
impl<N: Scalar, R, S> CsVector<N, R, S> {
pub fn axpy(&mut self, alpha: N, x: CsVector<N, R, S>, beta: N) {
// First, compute the number of non-zero entries.
let mut nnzero = 0;
// Allocate a size large enough.
self.data.set_column_len(0, nnzero);
// Fill with the axpy.
let mut i = self.nvalues();
let mut j = x.nvalues();
let mut k = nnzero - 1;
let mut rid1 = self.data.row_index(0, i - 1);
let mut rid2 = x.data.row_index(0, j - 1);
while k > 0 {
if rid1 == rid2 {
self.data.set_row_index(0, k, rid1);
self[k] = alpha * x[j] + beta * self[k];
i -= 1;
j -= 1;
} else if rid1 < rid2 {
self.data.set_row_index(0, k, rid1);
self[k] = beta * self[i];
i -= 1;
} else {
self.data.set_row_index(0, k, rid2);
self[k] = alpha * x[j];
j -= 1;
}
k -= 1;
}
}
}
*/
impl<N: Scalar + Zero + ClosedAdd + ClosedMul, D: Dim, S: StorageMut<N, D>> Vector<N, D, S> {
pub fn axpy_cs<D2: Dim, S2>(&mut self, alpha: N, x: &CsVector<N, D2, S2>, beta: N)
where
S2: CsStorage<N, D2>,
ShapeConstraint: DimEq<D, D2>,
{
if beta.is_zero() {
for i in 0..x.nvalues() {
unsafe {
let k = x.data.row_index_unchecked(i);
let y = self.vget_unchecked_mut(k);
*y = alpha * *x.data.get_value_unchecked(i);
}
}
} else {
for i in 0..x.nvalues() {
unsafe {
let k = x.data.row_index_unchecked(i);
let y = self.vget_unchecked_mut(k);
*y = alpha * *x.data.get_value_unchecked(i) + beta * *y;
}
}
}
}
/*
pub fn gemv_sparse<R2: Dim, C2: Dim, S2>(&mut self, alpha: N, a: &CsMatrix<N, R2, C2, S2>, x: &DVector<N>, beta: N)
where
S2: CsStorage<N, R2, C2> {
let col2 = a.column(0);
let val = unsafe { *x.vget_unchecked(0) };
self.axpy_sparse(alpha * val, &col2, beta);
for j in 1..ncols2 {
let col2 = a.column(j);
let val = unsafe { *x.vget_unchecked(j) };
self.axpy_sparse(alpha * val, &col2, N::one());
}
}
*/
}
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Mul<&'b CsMatrix<N, R2, C2, S2>>
for &'a CsMatrix<N, R1, C1, S1>
where
N: Scalar + ClosedAdd + ClosedMul + Zero,
R1: Dim,
C1: Dim,
R2: Dim,
C2: Dim,
S1: CsStorage<N, R1, C1>,
S2: CsStorage<N, R2, C2>,
ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
{
type Output = CsMatrix<N, R1, C2>;
fn mul(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> CsMatrix<N, R1, C2> {
let (nrows1, ncols1) = self.data.shape();
let (nrows2, ncols2) = rhs.data.shape();
assert_eq!(
ncols1.value(),
nrows2.value(),
"Mismatched dimensions for matrix multiplication."
);
let mut res =
CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.nvalues() + rhs.nvalues());
let mut timestamps = VectorN::zeros_generic(nrows1, U1);
let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
let mut nz = 0;
for j in 0..ncols2.value() {
res.data.p[j] = nz;
let column_idx = rhs.data.column_range(j);
let new_size_bound = nz + nrows1.value();
res.data.i.resize(new_size_bound, 0);
res.data.vals.resize(new_size_bound, N::zero());
for vi in column_idx {
let i = rhs.data.row_index(vi);
nz = self.scatter(
i,
*rhs.data.get_value(vi),
timestamps.as_mut_slice(),
j + 1,
workspace.as_mut_slice(),
nz,
&mut res,
);
}
for p in res.data.p[j]..nz {
res.data.vals[p] = workspace[res.data.i[p]]
}
}
res.data.i.truncate(nz);
res.data.i.shrink_to_fit();
res.data.vals.truncate(nz);
res.data.vals.shrink_to_fit();
res
}
}
impl<'a, 'b, N, R1, R2, C1, C2, S1, S2> Add<&'b CsMatrix<N, R2, C2, S2>>
for &'a CsMatrix<N, R1, C1, S1>
where
N: Scalar + ClosedAdd + ClosedMul + One,
R1: Dim,
C1: Dim,
R2: Dim,
C2: Dim,
S1: CsStorage<N, R1, C1>,
S2: CsStorage<N, R2, C2>,
ShapeConstraint: DimEq<R1, R2> + DimEq<C1, C2>,
DefaultAllocator: Allocator<usize, C2> + Allocator<usize, R1> + Allocator<N, R1>,
{
type Output = CsMatrix<N, R1, C2>;
fn add(self, rhs: &'b CsMatrix<N, R2, C2, S2>) -> CsMatrix<N, R1, C2> {
let (nrows1, ncols1) = self.data.shape();
let (nrows2, ncols2) = rhs.data.shape();
assert_eq!(
(nrows1.value(), ncols1.value()),
(nrows2.value(), ncols2.value()),
"Mismatched dimensions for matrix sum."
);
let mut res =
CsMatrix::new_uninitialized_generic(nrows1, ncols2, self.nvalues() + rhs.nvalues());
let mut timestamps = VectorN::zeros_generic(nrows1, U1);
let mut workspace = unsafe { VectorN::new_uninitialized_generic(nrows1, U1) };
let mut nz = 0;
for j in 0..ncols2.value() {
res.data.p[j] = nz;
nz = self.scatter(
j,
N::one(),
timestamps.as_mut_slice(),
j + 1,
workspace.as_mut_slice(),
nz,
&mut res,
);
nz = rhs.scatter(
j,
N::one(),
timestamps.as_mut_slice(),
j + 1,
workspace.as_mut_slice(),
nz,
&mut res,
);
for p in res.data.p[j]..nz {
res.data.vals[p] = workspace[res.data.i[p]]
}
}
res.data.i.truncate(nz);
res.data.i.shrink_to_fit();
res.data.vals.truncate(nz);
res.data.vals.shrink_to_fit();
res
}
}
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<CsMatrix<N, R, C, S>> for MatrixMN<N, R, C>
where
S: CsStorage<N, R, C>,
DefaultAllocator: Allocator<N, R, C>,
{
fn from(m: CsMatrix<N, R, C, S>) -> Self {
let (nrows, ncols) = m.data.shape();
let mut res = MatrixMN::zeros_generic(nrows, ncols);
for j in 0..ncols.value() {
let column_idx = m.data.column_range(j);
for iv in column_idx {
let i = m.data.row_index(iv);
res[(i, j)] = *m.data.get_value(iv);
}
}
res
}
}
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<Matrix<N, R, C, S>> for CsMatrix<N, R, C>
where
S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C> + Allocator<usize, C>,
{
fn from(m: Matrix<N, R, C, S>) -> Self {
let (nrows, ncols) = m.data.shape();
let nvalues = m.iter().filter(|e| !e.is_zero()).count();
let mut res = CsMatrix::new_uninitialized_generic(nrows, ncols, nvalues);
let mut nz = 0;
for j in 0..ncols.value() {
let column = m.column(j);
res.data.p[j] = nz;
for i in 0..nrows.value() {
if !column[i].is_zero() {
res.data.i[nz] = i;
res.data.vals[nz] = column[i];
nz += 1;
}
}
}
res
}
}