406 lines
11 KiB
Rust
406 lines
11 KiB
Rust
use crate::storage::RawStorage;
|
|
use crate::{ComplexField, Dim, Matrix, Scalar, SimdComplexField, SimdPartialOrd, Vector};
|
|
use num::{Signed, Zero};
|
|
use simba::simd::SimdSigned;
|
|
|
|
/// # Find the min and max components
|
|
impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
|
/// Returns the absolute value of the component with the largest absolute value.
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).amax(), 3.0);
|
|
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).amax(), 3.0);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn amax(&self) -> T
|
|
where
|
|
T: Zero + SimdSigned + SimdPartialOrd,
|
|
{
|
|
self.fold_with(
|
|
|e| e.unwrap_or(&T::zero()).simd_abs(),
|
|
|a, b| a.simd_max(b.simd_abs()),
|
|
)
|
|
}
|
|
|
|
/// Returns the the 1-norm of the complex component with the largest 1-norm.
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Vector3, Complex};
|
|
/// assert_eq!(Vector3::new(
|
|
/// Complex::new(-3.0, -2.0),
|
|
/// Complex::new(1.0, 2.0),
|
|
/// Complex::new(1.0, 3.0)).camax(), 5.0);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn camax(&self) -> T::SimdRealField
|
|
where
|
|
T: SimdComplexField,
|
|
{
|
|
self.fold_with(
|
|
|e| e.unwrap_or(&T::zero()).clone().simd_norm1(),
|
|
|a, b| a.simd_max(b.clone().simd_norm1()),
|
|
)
|
|
}
|
|
|
|
/// Returns the component with the largest value.
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).max(), 3.0);
|
|
/// assert_eq!(Vector3::new(-1.0, -2.0, -3.0).max(), -1.0);
|
|
/// assert_eq!(Vector3::new(5u32, 2, 3).max(), 5);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn max(&self) -> T
|
|
where
|
|
T: SimdPartialOrd + Zero,
|
|
{
|
|
self.fold_with(
|
|
|e| e.cloned().unwrap_or_else(T::zero),
|
|
|a, b| a.simd_max(b.clone()),
|
|
)
|
|
}
|
|
|
|
/// Returns the absolute value of the component with the smallest absolute value.
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// assert_eq!(Vector3::new(-1.0, 2.0, -3.0).amin(), 1.0);
|
|
/// assert_eq!(Vector3::new(10.0, 2.0, 30.0).amin(), 2.0);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn amin(&self) -> T
|
|
where
|
|
T: Zero + SimdPartialOrd + SimdSigned,
|
|
{
|
|
self.fold_with(
|
|
|e| e.map(|e| e.simd_abs()).unwrap_or_else(T::zero),
|
|
|a, b| a.simd_min(b.simd_abs()),
|
|
)
|
|
}
|
|
|
|
/// Returns the the 1-norm of the complex component with the smallest 1-norm.
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::{Vector3, Complex};
|
|
/// assert_eq!(Vector3::new(
|
|
/// Complex::new(-3.0, -2.0),
|
|
/// Complex::new(1.0, 2.0),
|
|
/// Complex::new(1.0, 3.0)).camin(), 3.0);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn camin(&self) -> T::SimdRealField
|
|
where
|
|
T: SimdComplexField,
|
|
{
|
|
self.fold_with(
|
|
|e| {
|
|
e.map(|e| e.clone().simd_norm1())
|
|
.unwrap_or_else(T::SimdRealField::zero)
|
|
},
|
|
|a, b| a.simd_min(b.clone().simd_norm1()),
|
|
)
|
|
}
|
|
|
|
/// Returns the component with the smallest value.
|
|
/// # Example
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// assert_eq!(Vector3::new(-1.0, 2.0, 3.0).min(), -1.0);
|
|
/// assert_eq!(Vector3::new(1.0, 2.0, 3.0).min(), 1.0);
|
|
/// assert_eq!(Vector3::new(5u32, 2, 3).min(), 2);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn min(&self) -> T
|
|
where
|
|
T: SimdPartialOrd + Zero,
|
|
{
|
|
self.fold_with(
|
|
|e| e.cloned().unwrap_or_else(T::zero),
|
|
|a, b| a.simd_min(b.clone()),
|
|
)
|
|
}
|
|
|
|
/// Computes the index of the matrix component with the largest absolute value.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # extern crate num_complex;
|
|
/// # extern crate nalgebra;
|
|
/// # use num_complex::Complex;
|
|
/// # use nalgebra::Matrix2x3;
|
|
/// let mat = Matrix2x3::new(Complex::new(11.0, 1.0), Complex::new(-12.0, 2.0), Complex::new(13.0, 3.0),
|
|
/// Complex::new(21.0, 43.0), Complex::new(22.0, 5.0), Complex::new(-23.0, 0.0));
|
|
/// assert_eq!(mat.icamax_full(), (1, 0));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn icamax_full(&self) -> (usize, usize)
|
|
where
|
|
T: ComplexField,
|
|
{
|
|
assert!(!self.is_empty(), "The input matrix must not be empty.");
|
|
|
|
let mut the_max = unsafe { self.get_unchecked((0, 0)).clone().norm1() };
|
|
let mut the_ij = (0, 0);
|
|
|
|
for j in 0..self.ncols() {
|
|
for i in 0..self.nrows() {
|
|
let val = unsafe { self.get_unchecked((i, j)).clone().norm1() };
|
|
|
|
if val > the_max {
|
|
the_max = val;
|
|
the_ij = (i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
the_ij
|
|
}
|
|
}
|
|
|
|
impl<T: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
|
|
/// Computes the index of the matrix component with the largest absolute value.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Matrix2x3;
|
|
/// let mat = Matrix2x3::new(11, -12, 13,
|
|
/// 21, 22, -23);
|
|
/// assert_eq!(mat.iamax_full(), (1, 2));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn iamax_full(&self) -> (usize, usize) {
|
|
assert!(!self.is_empty(), "The input matrix must not be empty.");
|
|
|
|
let mut the_max = unsafe { self.get_unchecked((0, 0)).abs() };
|
|
let mut the_ij = (0, 0);
|
|
|
|
for j in 0..self.ncols() {
|
|
for i in 0..self.nrows() {
|
|
let val = unsafe { self.get_unchecked((i, j)).abs() };
|
|
|
|
if val > the_max {
|
|
the_max = val;
|
|
the_ij = (i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
the_ij
|
|
}
|
|
}
|
|
|
|
// TODO: find a way to avoid code duplication just for complex number support.
|
|
/// # Find the min and max components (vector-specific methods)
|
|
impl<T: Scalar, D: Dim, S: RawStorage<T, D>> Vector<T, D, S> {
|
|
/// Computes the index of the vector component with the largest complex or real absolute value.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # extern crate num_complex;
|
|
/// # extern crate nalgebra;
|
|
/// # use num_complex::Complex;
|
|
/// # use nalgebra::Vector3;
|
|
/// let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0));
|
|
/// assert_eq!(vec.icamax(), 2);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn icamax(&self) -> usize
|
|
where
|
|
T: ComplexField,
|
|
{
|
|
assert!(!self.is_empty(), "The input vector must not be empty.");
|
|
|
|
let mut the_max = unsafe { self.vget_unchecked(0).clone().norm1() };
|
|
let mut the_i = 0;
|
|
|
|
for i in 1..self.nrows() {
|
|
let val = unsafe { self.vget_unchecked(i).clone().norm1() };
|
|
|
|
if val > the_max {
|
|
the_max = val;
|
|
the_i = i;
|
|
}
|
|
}
|
|
|
|
the_i
|
|
}
|
|
|
|
/// Computes the index and value of the vector component with the largest value.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// let vec = Vector3::new(11, -15, 13);
|
|
/// assert_eq!(vec.argmax(), (2, 13));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn argmax(&self) -> (usize, T)
|
|
where
|
|
T: PartialOrd,
|
|
{
|
|
assert!(!self.is_empty(), "The input vector must not be empty.");
|
|
|
|
let mut the_max = unsafe { self.vget_unchecked(0) };
|
|
let mut the_i = 0;
|
|
|
|
for i in 1..self.nrows() {
|
|
let val = unsafe { self.vget_unchecked(i) };
|
|
|
|
if val > the_max {
|
|
the_max = val;
|
|
the_i = i;
|
|
}
|
|
}
|
|
|
|
(the_i, the_max.clone())
|
|
}
|
|
|
|
/// Computes the index of the vector component with the largest value.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// let vec = Vector3::new(11, -15, 13);
|
|
/// assert_eq!(vec.imax(), 2);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn imax(&self) -> usize
|
|
where
|
|
T: PartialOrd,
|
|
{
|
|
self.argmax().0
|
|
}
|
|
|
|
/// Computes the index of the vector component with the largest absolute value.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// let vec = Vector3::new(11, -15, 13);
|
|
/// assert_eq!(vec.iamax(), 1);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn iamax(&self) -> usize
|
|
where
|
|
T: PartialOrd + Signed,
|
|
{
|
|
assert!(!self.is_empty(), "The input vector must not be empty.");
|
|
|
|
let mut the_max = unsafe { self.vget_unchecked(0).abs() };
|
|
let mut the_i = 0;
|
|
|
|
for i in 1..self.nrows() {
|
|
let val = unsafe { self.vget_unchecked(i).abs() };
|
|
|
|
if val > the_max {
|
|
the_max = val;
|
|
the_i = i;
|
|
}
|
|
}
|
|
|
|
the_i
|
|
}
|
|
|
|
/// Computes the index and value of the vector component with the smallest value.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// let vec = Vector3::new(11, -15, 13);
|
|
/// assert_eq!(vec.argmin(), (1, -15));
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn argmin(&self) -> (usize, T)
|
|
where
|
|
T: PartialOrd,
|
|
{
|
|
assert!(!self.is_empty(), "The input vector must not be empty.");
|
|
|
|
let mut the_min = unsafe { self.vget_unchecked(0) };
|
|
let mut the_i = 0;
|
|
|
|
for i in 1..self.nrows() {
|
|
let val = unsafe { self.vget_unchecked(i) };
|
|
|
|
if val < the_min {
|
|
the_min = val;
|
|
the_i = i;
|
|
}
|
|
}
|
|
|
|
(the_i, the_min.clone())
|
|
}
|
|
|
|
/// Computes the index of the vector component with the smallest value.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// let vec = Vector3::new(11, -15, 13);
|
|
/// assert_eq!(vec.imin(), 1);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn imin(&self) -> usize
|
|
where
|
|
T: PartialOrd,
|
|
{
|
|
self.argmin().0
|
|
}
|
|
|
|
/// Computes the index of the vector component with the smallest absolute value.
|
|
///
|
|
/// # Examples:
|
|
///
|
|
/// ```
|
|
/// # use nalgebra::Vector3;
|
|
/// let vec = Vector3::new(11, -15, 13);
|
|
/// assert_eq!(vec.iamin(), 0);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn iamin(&self) -> usize
|
|
where
|
|
T: PartialOrd + Signed,
|
|
{
|
|
assert!(!self.is_empty(), "The input vector must not be empty.");
|
|
|
|
let mut the_min = unsafe { self.vget_unchecked(0).abs() };
|
|
let mut the_i = 0;
|
|
|
|
for i in 1..self.nrows() {
|
|
let val = unsafe { self.vget_unchecked(i).abs() };
|
|
|
|
if val < the_min {
|
|
the_min = val;
|
|
the_i = i;
|
|
}
|
|
}
|
|
|
|
the_i
|
|
}
|
|
}
|