nalgebra/tests/linalg/qr.rs

172 lines
6.3 KiB
Rust

use na::{Matrix2, Matrix4x2, U3, U4};
#[test]
fn simple_qr() {
#[rustfmt::skip]
let a = Matrix4x2::new(
-0.8943285241224914 , 0.12787800716234649,
-0.37320804072796987, 0.21338804264385058,
0. , -0.2456767687354977 ,
0.2456767687354977 , 0. );
let qr = a.qr();
// the reference values were generated by converting the input
// to the form `m * 2 ^ e` for integers m and e. This was then used to
// obtain the QR decomposition without rounding errors. The result was
// converted back to f64.
#[rustfmt::skip]
let r_ref = Matrix2::new(
0.99973237689865724, -0.19405501632841561,
0. , -0.2908383860381578);
assert_relative_eq!(qr.r(), r_ref);
#[rustfmt::skip]
let q_ref = Matrix4x2::new(
-0.89456793116659196, 0.15719172406996297,
-0.3733079465583837 , -0.48461884587835711,
0. , 0.8447191998351451,
0.24574253511487697, -0.1639658791740342);
assert_relative_eq!(qr.q(), q_ref);
}
#[test]
fn q_columns() {
let a = Matrix4x2::new(0., 1., 3., 3., 1., 1., 2., 1.);
let qr = a.qr();
assert!(qr.q_columns(U4).is_orthogonal(1.0e-15));
}
#[test]
#[should_panic]
fn q_columns_panic() {
Matrix2::<f64>::zeros().qr().q_columns(U3);
}
#[cfg(feature = "arbitrary")]
mod quickcheck_test {
macro_rules! gen_tests(
($module: ident, $scalar: ty) => {
mod $module {
use na::{DMatrix, DVector, Matrix3x5, Matrix4, Matrix4x3, Matrix5x3, Vector4};
use std::cmp;
#[allow(unused_imports)]
use crate::core::helper::{RandScalar, RandComplex};
quickcheck! {
fn qr(m: DMatrix<$scalar>) -> bool {
let m = m.map(|e| e.0);
let qr = m.clone().qr();
let q = qr.q();
let r = qr.r();
relative_eq!(m, &q * r, epsilon = 1.0e-9) &&
q.is_orthogonal(1.0e-15)
}
fn qr_static_5_3(m: Matrix5x3<$scalar>) -> bool {
let m = m.map(|e| e.0);
let qr = m.qr();
let q = qr.q();
let r = qr.r();
relative_eq!(m, q * r, epsilon = 1.0e-8) &&
q.is_orthogonal(1.0e-15)
}
fn qr_static_3_5(m: Matrix3x5<$scalar>) -> bool {
let m = m.map(|e| e.0);
let qr = m.qr();
let q = qr.q();
let r = qr.r();
relative_eq!(m, q * r, epsilon = 1.0e-9) &&
q.is_orthogonal(1.0e-15)
}
fn qr_static_square(m: Matrix4<$scalar>) -> bool {
let m = m.map(|e| e.0);
let qr = m.qr();
let q = qr.q();
let r = qr.r();
relative_eq!(m, q * r, epsilon = 1.0e-9) &&
q.is_orthogonal(1.0e-15)
}
fn qr_solve(n: usize, nb: usize) -> bool {
if n != 0 && nb != 0 {
let n = cmp::min(n, 50); // To avoid slowing down the test too much.
let nb = cmp::min(nb, 50); // To avoid slowing down the test too much.
let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0);
let mut qr = m.clone().qr();
let b1 = DVector::<$scalar>::new_random(n).map(|e| e.0);
let b2 = DMatrix::<$scalar>::new_random(n, nb).map(|e| e.0);
if qr.is_invertible() {
let sol1 = qr.solve(&b1).unwrap();
let sol2 = qr.solve(&b2).unwrap();
return relative_eq!(&m * sol1, b1, epsilon = 1.0e-8) &&
relative_eq!(&m * sol2, b2, epsilon = 1.0e-8)
}
}
return true;
}
fn qr_solve_static(m: Matrix4<$scalar>) -> bool {
let m = m.map(|e| e.0);
let mut qr = m.qr();
let b1 = Vector4::<$scalar>::new_random().map(|e| e.0);
let b2 = Matrix4x3::<$scalar>::new_random().map(|e| e.0);
if qr.is_invertible() {
let sol1 = qr.solve(&b1).unwrap();
let sol2 = qr.solve(&b2).unwrap();
relative_eq!(m * sol1, b1, epsilon = 1.0e-8) &&
relative_eq!(m * sol2, b2, epsilon = 1.0e-8)
}
else {
false
}
}
fn qr_inverse(n: usize) -> bool {
let n = cmp::max(1, cmp::min(n, 15)); // To avoid slowing down the test too much.
let m = DMatrix::<$scalar>::new_random(n, n).map(|e| e.0);
if let Some(m1) = m.clone().qr().try_inverse() {
let id1 = &m * &m1;
let id2 = &m1 * &m;
id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7)
}
else {
true
}
}
fn qr_inverse_static(m: Matrix4<$scalar>) -> bool {
let m = m.map(|e| e.0);
let mut qr = m.qr();
if let Some(m1) = qr.try_inverse() {
let id1 = &m * &m1;
let id2 = &m1 * &m;
id1.is_identity(1.0e-7) && id2.is_identity(1.0e-7)
}
else {
true
}
}
}
}
}
);
gen_tests!(complex, RandComplex<f64>);
gen_tests!(f64, RandScalar<f64>);
}