nalgebra/tests/quat.rs

122 lines
3.4 KiB
Rust

extern crate nalgebra as na;
extern crate rand;
use na::{Point3, Quaternion, Vector3, Rotation3, UnitQuaternion, Rotation, one};
use rand::random;
#[test]
fn test_quaternion_as_matrix() {
for _ in 0usize .. 10000 {
let axis_angle: Vector3<f64> = random();
assert!(na::approx_eq(&UnitQuaternion::from_scaled_axis(axis_angle).to_rotation_matrix(), &Rotation3::new(axis_angle)))
}
}
#[test]
fn test_quaternion_mul_vec_or_point_as_matrix() {
for _ in 0usize .. 10000 {
let axis_angle: Vector3<f64> = random();
let vector: Vector3<f64> = random();
let point: Point3<f64> = random();
let matrix = Rotation3::new(axis_angle);
let quaternion = UnitQuaternion::from_scaled_axis(axis_angle);
assert!(na::approx_eq(&(matrix * vector), &(quaternion * vector)));
assert!(na::approx_eq(&(matrix * point), &(quaternion * point)));
assert!(na::approx_eq(&(vector * matrix), &(vector * quaternion)));
assert!(na::approx_eq(&(point * matrix), &(point * quaternion)));
}
}
#[test]
fn test_quaternion_div_quaternion() {
for _ in 0usize .. 10000 {
let axis_angle1: Vector3<f64> = random();
let axis_angle2: Vector3<f64> = random();
let r1 = Rotation3::new(axis_angle1);
let r2 = na::inverse(&Rotation3::new(axis_angle2)).unwrap();
let q1 = UnitQuaternion::from_scaled_axis(axis_angle1);
let q2 = UnitQuaternion::from_scaled_axis(axis_angle2);
assert!(na::approx_eq(&(q1 / q2).to_rotation_matrix(), &(r1 * r2)))
}
}
#[test]
fn test_quaternion_to_axis_angle() {
for _ in 0usize .. 10000 {
let axis_angle: Vector3<f64> = random();
let q = UnitQuaternion::from_scaled_axis(axis_angle);
println!("{:?} {:?}", q.rotation(), axis_angle);
assert!(na::approx_eq(&q.rotation(), &axis_angle))
}
}
#[test]
fn test_quaternion_euler_angles() {
for _ in 0usize .. 10000 {
let angles: Vector3<f64> = random();
let q = UnitQuaternion::from_euler_angles(angles.x, angles.y, angles.z);
let m = Rotation3::from_euler_angles(angles.x, angles.y, angles.z);
assert!(na::approx_eq(&q.to_rotation_matrix(), &m))
}
}
#[test]
fn test_quaternion_rotation_between() {
let q1: UnitQuaternion<f64> = random();
let q2: UnitQuaternion<f64> = random();
let delta = na::rotation_between(&q1, &q2);
assert!(na::approx_eq(&(delta * q1), &q2))
}
#[test]
fn test_quaternion_angle_between() {
let q1: UnitQuaternion<f64> = random();
let q2: UnitQuaternion<f64> = random();
let delta = na::rotation_between(&q1, &q2);
let delta_angle = na::angle_between(&q1, &q2);
assert!(na::approx_eq(&na::norm(&na::rotation(&delta)), &delta_angle))
}
#[test]
fn test_quaternion_exp_zero_is_one() {
let q = Quaternion::new(0., 0., 0., 0.);
assert!(na::approx_eq(&q.exp(), &one()))
}
#[test]
fn test_quaternion_neutral() {
for _ in 0 .. 10000 {
let q1: Quaternion<f32> = random();
let qi: Quaternion<f32> = one();
let q2 = q1 * qi;
let q3 = qi * q1;
assert!(na::approx_eq(&q1, &q2) && na::approx_eq(&q2, &q3))
}
}
#[test]
fn test_quaternion_polar_decomposition() {
for _ in 0 .. 10000 {
let q1: Quaternion<f32> = random();
let decomp = q1.polar_decomposition();
let q2 = Quaternion::from_polar_decomposition(decomp.0, decomp.1, decomp.2);
assert!(na::approx_eq(&q1, &q2))
}
}