308 lines
9.7 KiB
Rust
308 lines
9.7 KiB
Rust
use num::Zero;
|
|
#[cfg(feature = "serde-serialize-no-std")]
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use crate::allocator::{Allocator, Reallocator};
|
|
use crate::base::{DefaultAllocator, Matrix, OMatrix, OVector, Unit};
|
|
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
|
|
use crate::dimension::{Const, Dim, DimMin, DimMinimum};
|
|
use crate::storage::{Storage, StorageMut};
|
|
use simba::scalar::ComplexField;
|
|
|
|
use crate::geometry::Reflection;
|
|
use crate::linalg::householder;
|
|
use std::mem::MaybeUninit;
|
|
|
|
/// The QR decomposition of a general matrix.
|
|
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize-no-std",
|
|
serde(bound(serialize = "DefaultAllocator: Allocator<T, R, C> +
|
|
Allocator<T, DimMinimum<R, C>>,
|
|
OMatrix<T, R, C>: Serialize,
|
|
OVector<T, DimMinimum<R, C>>: Serialize"))
|
|
)]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize-no-std",
|
|
serde(bound(deserialize = "DefaultAllocator: Allocator<T, R, C> +
|
|
Allocator<T, DimMinimum<R, C>>,
|
|
OMatrix<T, R, C>: Deserialize<'de>,
|
|
OVector<T, DimMinimum<R, C>>: Deserialize<'de>"))
|
|
)]
|
|
#[derive(Clone, Debug)]
|
|
pub struct QR<T: ComplexField, R: DimMin<C>, C: Dim>
|
|
where
|
|
DefaultAllocator: Allocator<T, R, C> + Allocator<T, DimMinimum<R, C>>,
|
|
{
|
|
qr: OMatrix<T, R, C>,
|
|
diag: OVector<T, DimMinimum<R, C>>,
|
|
}
|
|
|
|
impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for QR<T, R, C>
|
|
where
|
|
DefaultAllocator: Allocator<T, R, C> + Allocator<T, DimMinimum<R, C>>,
|
|
OMatrix<T, R, C>: Copy,
|
|
OVector<T, DimMinimum<R, C>>: Copy,
|
|
{
|
|
}
|
|
|
|
impl<T: ComplexField, R: DimMin<C>, C: Dim> QR<T, R, C>
|
|
where
|
|
DefaultAllocator: Allocator<T, R, C> + Allocator<T, R> + Allocator<T, DimMinimum<R, C>>,
|
|
{
|
|
/// Computes the QR decomposition using householder reflections.
|
|
pub fn new(mut matrix: OMatrix<T, R, C>) -> Self {
|
|
let (nrows, ncols) = matrix.shape_generic();
|
|
let min_nrows_ncols = nrows.min(ncols);
|
|
|
|
if min_nrows_ncols.value() == 0 {
|
|
return QR {
|
|
qr: matrix,
|
|
diag: Matrix::zeros_generic(min_nrows_ncols, Const::<1>),
|
|
};
|
|
}
|
|
|
|
let mut diag = Matrix::uninit(min_nrows_ncols, Const::<1>);
|
|
|
|
for i in 0..min_nrows_ncols.value() {
|
|
diag[i] =
|
|
MaybeUninit::new(householder::clear_column_unchecked(&mut matrix, i, 0, None));
|
|
}
|
|
|
|
// Safety: diag is now fully initialized.
|
|
let diag = unsafe { diag.assume_init() };
|
|
QR { qr: matrix, diag }
|
|
}
|
|
|
|
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn r(&self) -> OMatrix<T, DimMinimum<R, C>, C>
|
|
where
|
|
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>,
|
|
{
|
|
let (nrows, ncols) = self.qr.shape_generic();
|
|
let mut res = self.qr.rows_generic(0, nrows.min(ncols)).upper_triangle();
|
|
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.clone().modulus())));
|
|
res
|
|
}
|
|
|
|
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
|
|
///
|
|
/// This is usually faster than `r` but consumes `self`.
|
|
#[inline]
|
|
pub fn unpack_r(self) -> OMatrix<T, DimMinimum<R, C>, C>
|
|
where
|
|
DefaultAllocator: Reallocator<T, R, C, DimMinimum<R, C>, C>,
|
|
{
|
|
let (nrows, ncols) = self.qr.shape_generic();
|
|
let mut res = self.qr.resize_generic(nrows.min(ncols), ncols, T::zero());
|
|
res.fill_lower_triangle(T::zero(), 1);
|
|
res.set_partial_diagonal(self.diag.iter().map(|e| T::from_real(e.clone().modulus())));
|
|
res
|
|
}
|
|
|
|
/// Computes the orthogonal matrix `Q` of this decomposition.
|
|
#[must_use]
|
|
pub fn q(&self) -> OMatrix<T, R, DimMinimum<R, C>>
|
|
where
|
|
DefaultAllocator: Allocator<T, R, DimMinimum<R, C>>,
|
|
{
|
|
let (nrows, ncols) = self.qr.shape_generic();
|
|
|
|
// NOTE: we could build the identity matrix and call q_mul on it.
|
|
// Instead we don't so that we take in account the matrix sparseness.
|
|
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
|
|
let dim = self.diag.len();
|
|
|
|
for i in (0..dim).rev() {
|
|
let axis = self.qr.slice_range(i.., i);
|
|
// TODO: sometimes, the axis might have a zero magnitude.
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
|
|
|
let mut res_rows = res.slice_range_mut(i.., i..);
|
|
refl.reflect_with_sign(&mut res_rows, self.diag[i].clone().signum());
|
|
}
|
|
|
|
res
|
|
}
|
|
|
|
/// Unpacks this decomposition into its two matrix factors.
|
|
pub fn unpack(
|
|
self,
|
|
) -> (
|
|
OMatrix<T, R, DimMinimum<R, C>>,
|
|
OMatrix<T, DimMinimum<R, C>, C>,
|
|
)
|
|
where
|
|
DimMinimum<R, C>: DimMin<C, Output = DimMinimum<R, C>>,
|
|
DefaultAllocator:
|
|
Allocator<T, R, DimMinimum<R, C>> + Reallocator<T, R, C, DimMinimum<R, C>, C>,
|
|
{
|
|
(self.q(), self.unpack_r())
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
pub fn qr_internal(&self) -> &OMatrix<T, R, C> {
|
|
&self.qr
|
|
}
|
|
|
|
#[must_use]
|
|
pub(crate) fn diag_internal(&self) -> &OVector<T, DimMinimum<R, C>> {
|
|
&self.diag
|
|
}
|
|
|
|
/// Multiplies the provided matrix by the transpose of the `Q` matrix of this decomposition.
|
|
pub fn q_tr_mul<R2: Dim, C2: Dim, S2>(&self, rhs: &mut Matrix<T, R2, C2, S2>)
|
|
// TODO: do we need a static constraint on the number of rows of rhs?
|
|
where
|
|
S2: StorageMut<T, R2, C2>,
|
|
{
|
|
let dim = self.diag.len();
|
|
|
|
for i in 0..dim {
|
|
let axis = self.qr.slice_range(i.., i);
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
|
|
|
let mut rhs_rows = rhs.rows_range_mut(i..);
|
|
refl.reflect_with_sign(&mut rhs_rows, self.diag[i].clone().signum().conjugate());
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: ComplexField, D: DimMin<D, Output = D>> QR<T, D, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
|
{
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
///
|
|
/// Returns `None` if `self` is not invertible.
|
|
#[must_use = "Did you mean to use solve_mut()?"]
|
|
pub fn solve<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &Matrix<T, R2, C2, S2>,
|
|
) -> Option<OMatrix<T, R2, C2>>
|
|
where
|
|
S2: Storage<T, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
DefaultAllocator: Allocator<T, R2, C2>,
|
|
{
|
|
let mut res = b.clone_owned();
|
|
|
|
if self.solve_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
///
|
|
/// If the decomposed matrix is not invertible, this returns `false` and its input `b` is
|
|
/// overwritten with garbage.
|
|
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<T, R2, C2, S2>) -> bool
|
|
where
|
|
S2: StorageMut<T, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
assert_eq!(
|
|
self.qr.nrows(),
|
|
b.nrows(),
|
|
"QR solve matrix dimension mismatch."
|
|
);
|
|
assert!(
|
|
self.qr.is_square(),
|
|
"QR solve: unable to solve a non-square system."
|
|
);
|
|
|
|
self.q_tr_mul(b);
|
|
self.solve_upper_triangular_mut(b)
|
|
}
|
|
|
|
// TODO: duplicate code from the `solve` module.
|
|
fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(
|
|
&self,
|
|
b: &mut Matrix<T, R2, C2, S2>,
|
|
) -> bool
|
|
where
|
|
S2: StorageMut<T, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R2, D>,
|
|
{
|
|
let dim = self.qr.nrows();
|
|
|
|
for k in 0..b.ncols() {
|
|
let mut b = b.column_mut(k);
|
|
for i in (0..dim).rev() {
|
|
let coeff;
|
|
|
|
unsafe {
|
|
let diag = self.diag.vget_unchecked(i).clone().modulus();
|
|
|
|
if diag.is_zero() {
|
|
return false;
|
|
}
|
|
|
|
coeff = b.vget_unchecked(i).clone().unscale(diag);
|
|
*b.vget_unchecked_mut(i) = coeff.clone();
|
|
}
|
|
|
|
b.rows_range_mut(..i)
|
|
.axpy(-coeff, &self.qr.slice_range(..i, i), T::one());
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
/// Computes the inverse of the decomposed matrix.
|
|
///
|
|
/// Returns `None` if the decomposed matrix is not invertible.
|
|
#[must_use]
|
|
pub fn try_inverse(&self) -> Option<OMatrix<T, D, D>> {
|
|
assert!(
|
|
self.qr.is_square(),
|
|
"QR inverse: unable to compute the inverse of a non-square matrix."
|
|
);
|
|
|
|
// TODO: is there a less naive method ?
|
|
let (nrows, ncols) = self.qr.shape_generic();
|
|
let mut res = OMatrix::identity_generic(nrows, ncols);
|
|
|
|
if self.solve_mut(&mut res) {
|
|
Some(res)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Indicates if the decomposed matrix is invertible.
|
|
#[must_use]
|
|
pub fn is_invertible(&self) -> bool {
|
|
assert!(
|
|
self.qr.is_square(),
|
|
"QR: unable to test the invertibility of a non-square matrix."
|
|
);
|
|
|
|
for i in 0..self.diag.len() {
|
|
if self.diag[i].is_zero() {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
true
|
|
}
|
|
|
|
// /// Computes the determinant of the decomposed matrix.
|
|
// pub fn determinant(&self) -> T {
|
|
// let dim = self.qr.nrows();
|
|
// assert!(self.qr.is_square(), "QR determinant: unable to compute the determinant of a non-square matrix.");
|
|
|
|
// let mut res = T::one();
|
|
// for i in 0 .. dim {
|
|
// res *= unsafe { *self.diag.vget_unchecked(i) };
|
|
// }
|
|
|
|
// res self.q_determinant()
|
|
// }
|
|
}
|