nalgebra/src/linalg/cholesky.rs

421 lines
16 KiB
Rust

#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};
use num::One;
use simba::scalar::ComplexField;
use simba::simd::SimdComplexField;
use crate::allocator::Allocator;
use crate::base::{Const, DefaultAllocator, Matrix, OMatrix, Vector};
use crate::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::dimension::{Dim, DimAdd, DimDiff, DimSub, DimSum, U1};
use crate::storage::{Storage, StorageMut};
/// The Cholesky decomposition of a symmetric-definite-positive matrix.
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(serialize = "DefaultAllocator: Allocator<T, D>,
OMatrix<T, D, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(deserialize = "DefaultAllocator: Allocator<T, D>,
OMatrix<T, D, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct Cholesky<T: SimdComplexField, D: Dim>
where
DefaultAllocator: Allocator<T, D, D>,
{
chol: OMatrix<T, D, D>,
}
impl<T: SimdComplexField, D: Dim> Copy for Cholesky<T, D>
where
DefaultAllocator: Allocator<T, D, D>,
OMatrix<T, D, D>: Copy,
{
}
impl<T: SimdComplexField, D: Dim> Cholesky<T, D>
where
DefaultAllocator: Allocator<T, D, D>,
{
/// Computes the Cholesky decomposition of `matrix` without checking that the matrix is definite-positive.
///
/// If the input matrix is not definite-positive, the decomposition may contain trash values (Inf, NaN, etc.)
pub fn new_unchecked(mut matrix: OMatrix<T, D, D>) -> Self {
assert!(matrix.is_square(), "The input matrix must be square.");
let n = matrix.nrows();
for j in 0..n {
for k in 0..j {
let factor = unsafe { -matrix.get_unchecked((j, k)).clone() };
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
let mut col_j = col_j.rows_range_mut(j..);
let col_k = col_k.rows_range(j..);
col_j.axpy(factor.simd_conjugate(), &col_k, T::one());
}
let diag = unsafe { matrix.get_unchecked((j, j)).clone() };
let denom = diag.simd_sqrt();
unsafe {
*matrix.get_unchecked_mut((j, j)) = denom.clone();
}
let mut col = matrix.slice_range_mut(j + 1.., j);
col /= denom;
}
Cholesky { chol: matrix }
}
/// Uses the given matrix as-is without any checks or modifications as the
/// Cholesky decomposition.
///
/// It is up to the user to ensure all invariants hold.
pub fn pack_dirty(matrix: OMatrix<T, D, D>) -> Self {
Cholesky { chol: matrix }
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
/// upper-triangular part filled with zeros.
pub fn unpack(mut self) -> OMatrix<T, D, D> {
self.chol.fill_upper_triangle(T::zero(), 1);
self.chol
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
/// its strict upper-triangular part.
///
/// The values of the strict upper-triangular part are garbage and should be ignored by further
/// computations.
pub fn unpack_dirty(self) -> OMatrix<T, D, D> {
self.chol
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition with its strictly
/// uppen-triangular part filled with zeros.
#[must_use]
pub fn l(&self) -> OMatrix<T, D, D> {
self.chol.lower_triangle()
}
/// Retrieves the lower-triangular factor of the Cholesky decomposition, without zeroing-out
/// its strict upper-triangular part.
///
/// This is an allocation-less version of `self.l()`. The values of the strict upper-triangular
/// part are garbage and should be ignored by further computations.
#[must_use]
pub fn l_dirty(&self) -> &OMatrix<T, D, D> {
&self.chol
}
/// Solves the system `self * x = b` where `self` is the decomposed matrix and `x` the unknown.
///
/// The result is stored on `b`.
pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<T, R2, C2, S2>)
where
S2: StorageMut<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
self.chol.solve_lower_triangular_unchecked_mut(b);
self.chol.ad_solve_lower_triangular_unchecked_mut(b);
}
/// Returns the solution of the system `self * x = b` where `self` is the decomposed matrix and
/// `x` the unknown.
#[must_use = "Did you mean to use solve_mut()?"]
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<T, R2, C2, S2>) -> OMatrix<T, R2, C2>
where
S2: Storage<T, R2, C2>,
DefaultAllocator: Allocator<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
let mut res = b.clone_owned();
self.solve_mut(&mut res);
res
}
/// Computes the inverse of the decomposed matrix.
#[must_use]
pub fn inverse(&self) -> OMatrix<T, D, D> {
let shape = self.chol.shape_generic();
let mut res = OMatrix::identity_generic(shape.0, shape.1);
self.solve_mut(&mut res);
res
}
/// Computes the determinant of the decomposed matrix.
#[must_use]
pub fn determinant(&self) -> T::SimdRealField {
let dim = self.chol.nrows();
let mut prod_diag = T::one();
for i in 0..dim {
prod_diag *= unsafe { self.chol.get_unchecked((i, i)).clone() };
}
prod_diag.simd_modulus_squared()
}
}
impl<T: ComplexField, D: Dim> Cholesky<T, D>
where
DefaultAllocator: Allocator<T, D, D>,
{
/// Attempts to compute the Cholesky decomposition of `matrix`.
///
/// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
/// to be symmetric and only the lower-triangular part is read.
pub fn new(matrix: OMatrix<T, D, D>) -> Option<Self> {
Self::new_internal(matrix, None)
}
/// Attempts to approximate the Cholesky decomposition of `matrix` by
/// replacing non-positive values on the diagonals during the decomposition
/// with the given `substitute`.
///
/// [`try_sqrt`](ComplexField::try_sqrt) will be applied to the `substitute`
/// when it has to be used.
///
/// If your input matrix results only in positive values on the diagonals
/// during the decomposition, `substitute` is unused and the result is just
/// the same as if you used [`new`](Cholesky::new).
///
/// This method allows to compensate for matrices with very small or even
/// negative values due to numerical errors but necessarily results in only
/// an approximation: it is basically a hack. If you don't specifically need
/// Cholesky, it may be better to consider alternatives like the
/// [`LU`](crate::linalg::LU) decomposition/factorization.
pub fn new_with_substitute(matrix: OMatrix<T, D, D>, substitute: T) -> Option<Self> {
Self::new_internal(matrix, Some(substitute))
}
/// Common implementation for `new` and `new_with_substitute`.
fn new_internal(mut matrix: OMatrix<T, D, D>, substitute: Option<T>) -> Option<Self> {
assert!(matrix.is_square(), "The input matrix must be square.");
let n = matrix.nrows();
for j in 0..n {
for k in 0..j {
let factor = unsafe { -matrix.get_unchecked((j, k)).clone() };
let (mut col_j, col_k) = matrix.columns_range_pair_mut(j, k);
let mut col_j = col_j.rows_range_mut(j..);
let col_k = col_k.rows_range(j..);
col_j.axpy(factor.conjugate(), &col_k, T::one());
}
let sqrt_denom = |v: T| {
if v.is_zero() {
return None;
}
v.try_sqrt()
};
let diag = unsafe { matrix.get_unchecked((j, j)).clone() };
if let Some(denom) =
sqrt_denom(diag).or_else(|| substitute.clone().and_then(sqrt_denom))
{
unsafe {
*matrix.get_unchecked_mut((j, j)) = denom.clone();
}
let mut col = matrix.slice_range_mut(j + 1.., j);
col /= denom;
continue;
}
// The diagonal element is either zero or its square root could not
// be taken (e.g. for negative real numbers).
return None;
}
Some(Cholesky { chol: matrix })
}
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `v`,
/// performs a rank one update such that we end up with the decomposition of `M + sigma * (v * v.adjoint())`.
#[inline]
pub fn rank_one_update<R2: Dim, S2>(&mut self, x: &Vector<T, R2, S2>, sigma: T::RealField)
where
S2: Storage<T, R2, U1>,
DefaultAllocator: Allocator<T, R2, U1>,
ShapeConstraint: SameNumberOfRows<R2, D>,
{
Self::xx_rank_one_update(&mut self.chol, &mut x.clone_owned(), sigma)
}
/// Updates the decomposition such that we get the decomposition of a matrix with the given column `col` in the `j`th position.
/// Since the matrix is square, an identical row will be added in the `j`th row.
pub fn insert_column<R2, S2>(
&self,
j: usize,
col: Vector<T, R2, S2>,
) -> Cholesky<T, DimSum<D, U1>>
where
D: DimAdd<U1>,
R2: Dim,
S2: Storage<T, R2, U1>,
DefaultAllocator: Allocator<T, DimSum<D, U1>, DimSum<D, U1>> + Allocator<T, R2>,
ShapeConstraint: SameNumberOfRows<R2, DimSum<D, U1>>,
{
let mut col = col.into_owned();
// for an explanation of the formulas, see https://en.wikipedia.org/wiki/Cholesky_decomposition#Updating_the_decomposition
let n = col.nrows();
assert_eq!(
n,
self.chol.nrows() + 1,
"The new column must have the size of the factored matrix plus one."
);
assert!(j < n, "j needs to be within the bound of the new matrix.");
// loads the data into a new matrix with an additional jth row/column
// TODO: would it be worth it to avoid the zero-initialization?
let mut chol = Matrix::zeros_generic(
self.chol.shape_generic().0.add(Const::<1>),
self.chol.shape_generic().1.add(Const::<1>),
);
chol.slice_range_mut(..j, ..j)
.copy_from(&self.chol.slice_range(..j, ..j));
chol.slice_range_mut(..j, j + 1..)
.copy_from(&self.chol.slice_range(..j, j..));
chol.slice_range_mut(j + 1.., ..j)
.copy_from(&self.chol.slice_range(j.., ..j));
chol.slice_range_mut(j + 1.., j + 1..)
.copy_from(&self.chol.slice_range(j.., j..));
// update the jth row
let top_left_corner = self.chol.slice_range(..j, ..j);
let col_j = col[j].clone();
let (mut new_rowj_adjoint, mut new_colj) = col.rows_range_pair_mut(..j, j + 1..);
assert!(
top_left_corner.solve_lower_triangular_mut(&mut new_rowj_adjoint),
"Cholesky::insert_column : Unable to solve lower triangular system!"
);
new_rowj_adjoint.adjoint_to(&mut chol.slice_range_mut(j, ..j));
// update the center element
let center_element = T::sqrt(col_j - T::from_real(new_rowj_adjoint.norm_squared()));
chol[(j, j)] = center_element.clone();
// update the jth column
let bottom_left_corner = self.chol.slice_range(j.., ..j);
// new_colj = (col_jplus - bottom_left_corner * new_rowj.adjoint()) / center_element;
new_colj.gemm(
-T::one() / center_element.clone(),
&bottom_left_corner,
&new_rowj_adjoint,
T::one() / center_element,
);
chol.slice_range_mut(j + 1.., j).copy_from(&new_colj);
// update the bottom right corner
let mut bottom_right_corner = chol.slice_range_mut(j + 1.., j + 1..);
Self::xx_rank_one_update(
&mut bottom_right_corner,
&mut new_colj,
-T::RealField::one(),
);
Cholesky { chol }
}
/// Updates the decomposition such that we get the decomposition of the factored matrix with its `j`th column removed.
/// Since the matrix is square, the `j`th row will also be removed.
#[must_use]
pub fn remove_column(&self, j: usize) -> Cholesky<T, DimDiff<D, U1>>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, DimDiff<D, U1>, DimDiff<D, U1>> + Allocator<T, D>,
{
let n = self.chol.nrows();
assert!(n > 0, "The matrix needs at least one column.");
assert!(j < n, "j needs to be within the bound of the matrix.");
// loads the data into a new matrix except for the jth row/column
// TODO: would it be worth it to avoid this zero initialization?
let mut chol = Matrix::zeros_generic(
self.chol.shape_generic().0.sub(Const::<1>),
self.chol.shape_generic().1.sub(Const::<1>),
);
chol.slice_range_mut(..j, ..j)
.copy_from(&self.chol.slice_range(..j, ..j));
chol.slice_range_mut(..j, j..)
.copy_from(&self.chol.slice_range(..j, j + 1..));
chol.slice_range_mut(j.., ..j)
.copy_from(&self.chol.slice_range(j + 1.., ..j));
chol.slice_range_mut(j.., j..)
.copy_from(&self.chol.slice_range(j + 1.., j + 1..));
// updates the bottom right corner
let mut bottom_right_corner = chol.slice_range_mut(j.., j..);
let mut workspace = self.chol.column(j).clone_owned();
let mut old_colj = workspace.rows_range_mut(j + 1..);
Self::xx_rank_one_update(&mut bottom_right_corner, &mut old_colj, T::RealField::one());
Cholesky { chol }
}
/// Given the Cholesky decomposition of a matrix `M`, a scalar `sigma` and a vector `x`,
/// performs a rank one update such that we end up with the decomposition of `M + sigma * (x * x.adjoint())`.
///
/// This helper method is called by `rank_one_update` but also `insert_column` and `remove_column`
/// where it is used on a square slice of the decomposition
fn xx_rank_one_update<Dm, Sm, Rx, Sx>(
chol: &mut Matrix<T, Dm, Dm, Sm>,
x: &mut Vector<T, Rx, Sx>,
sigma: T::RealField,
) where
//T: ComplexField,
Dm: Dim,
Rx: Dim,
Sm: StorageMut<T, Dm, Dm>,
Sx: StorageMut<T, Rx, U1>,
{
// heavily inspired by Eigen's `llt_rank_update_lower` implementation https://eigen.tuxfamily.org/dox/LLT_8h_source.html
let n = x.nrows();
assert_eq!(
n,
chol.nrows(),
"The input vector must be of the same size as the factorized matrix."
);
let mut beta = crate::one::<T::RealField>();
for j in 0..n {
// updates the diagonal
let diag = T::real(unsafe { chol.get_unchecked((j, j)).clone() });
let diag2 = diag.clone() * diag.clone();
let xj = unsafe { x.get_unchecked(j).clone() };
let sigma_xj2 = sigma.clone() * T::modulus_squared(xj.clone());
let gamma = diag2.clone() * beta.clone() + sigma_xj2.clone();
let new_diag = (diag2.clone() + sigma_xj2.clone() / beta.clone()).sqrt();
unsafe { *chol.get_unchecked_mut((j, j)) = T::from_real(new_diag.clone()) };
beta += sigma_xj2 / diag2;
// updates the terms of L
let mut xjplus = x.rows_range_mut(j + 1..);
let mut col_j = chol.slice_range_mut(j + 1.., j);
// temp_jplus -= (wj / T::from_real(diag)) * col_j;
xjplus.axpy(-xj.clone() / T::from_real(diag.clone()), &col_j, T::one());
if gamma != crate::zero::<T::RealField>() {
// col_j = T::from_real(nljj / diag) * col_j + (T::from_real(nljj * sigma / gamma) * T::conjugate(wj)) * temp_jplus;
col_j.axpy(
T::from_real(new_diag.clone() * sigma.clone() / gamma) * T::conjugate(xj),
&xjplus,
T::from_real(new_diag / diag),
);
}
}
}
}