nalgebra/src/linalg/hessenberg.rs
2017-08-15 19:07:18 +02:00

109 lines
3.8 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use alga::general::Real;
use core::{SquareMatrix, MatrixN, MatrixMN, VectorN, DefaultAllocator};
use dimension::{DimSub, DimDiff, Dynamic, U1};
use storage::Storage;
use allocator::Allocator;
use constraint::{ShapeConstraint, DimEq};
use linalg::householder;
/// The Hessenberg decomposition of a general matrix.
pub struct Hessenberg<N: Real, D: DimSub<U1>>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, DimDiff<D, U1>> {
hess: MatrixN<N, D>,
subdiag: VectorN<N, DimDiff<D, U1>>
}
impl<N: Real, D: DimSub<U1>> Hessenberg<N, D>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> +
Allocator<N, DimDiff<D, U1>> {
/// Computes the Hessenberg decomposition using householder reflections.
pub fn new(hess: MatrixN<N, D>) -> Self {
let mut work = unsafe { MatrixMN::new_uninitialized_generic(hess.data.shape().0, U1) };
Self::new_with_workspace(hess, &mut work)
}
/// Computes the Hessenberg decomposition using householder reflections.
///
/// The workspace containing `D` elements must be provided and may be uninitialized.
pub fn new_with_workspace(mut hess: MatrixN<N, D>, work: &mut VectorN<N, D>) -> Self {
assert!(hess.is_square(), "Cannot compute the hessenberg decomposition of a non-square matrix.");
let dim = hess.data.shape().0;
assert!(dim.value() != 0, "Cannot compute the hessenberg decomposition of an empty matrix.");
assert_eq!(dim.value(), work.len(), "Hessenberg: invalid workspace size.");
let mut subdiag = unsafe { MatrixMN::new_uninitialized_generic(dim.sub(U1), U1) };
if dim.value() == 0 {
return Hessenberg { hess, subdiag };
}
for ite in 0 .. dim.value() - 1 {
householder::clear_column_unchecked(&mut hess, &mut subdiag[ite], ite, 1, Some(work));
}
Hessenberg { hess, subdiag }
}
/// Retrieves `(q, h)` with `q` the orthogonal matrix of this decomposition and `h` the
/// hessenberg matrix.
#[inline]
pub fn unpack(self) -> (MatrixN<N, D>, MatrixN<N, D>)
where ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>> {
let q = self.q();
(q, self.unpack_h())
}
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
#[inline]
pub fn unpack_h(mut self) -> MatrixN<N, D>
where ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>> {
let dim = self.hess.nrows();
self.hess.fill_lower_triangle(N::zero(), 2);
self.hess.slice_mut((1, 0), (dim - 1, dim - 1)).set_diagonal(&self.subdiag);
self.hess
}
// FIXME: add a h that moves out of self.
/// Retrieves the upper trapezoidal submatrix `H` of this decomposition.
///
/// This is less efficient than `.unpack_h()`.
#[inline]
pub fn h(&self) -> MatrixN<N, D>
where ShapeConstraint: DimEq<Dynamic, DimDiff<D, U1>> {
let dim = self.hess.nrows();
let mut res = self.hess.clone();
res.fill_lower_triangle(N::zero(), 2);
res.slice_mut((1, 0), (dim - 1, dim - 1)).set_diagonal(&self.subdiag);
res
}
/// Computes the orthogonal matrix `Q` of this decomposition.
pub fn q(&self) -> MatrixN<N, D> {
householder::assemble_q(&self.hess)
}
#[doc(hidden)]
pub fn hess_internal(&self) -> &MatrixN<N, D> {
&self.hess
}
}
impl<N: Real, D: DimSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
where DefaultAllocator: Allocator<N, D, D> +
Allocator<N, D> +
Allocator<N, DimDiff<D, U1>> {
/// Computes the Hessenberg decomposition of this matrix using householder reflections.
pub fn hessenberg(self) -> Hessenberg<N, D> {
Hessenberg::new(self.into_owned())
}
}