extern crate nalgebra as na; extern crate rand; use rand::random; use na::{Rotation2, Rotation3, Isometry2, Isometry3, Similarity2, Similarity3, Vector3, Matrix1, Matrix2, Matrix3, Matrix4, Matrix5, Matrix6, DMatrix, DVector, Row, Column, Diagonal, Transpose, RowSlice, ColumnSlice, Shape}; macro_rules! test_inverse_mat_impl( ($t: ty) => ( for _ in 0usize .. 10000 { let randmatrix : $t = random(); match na::inverse(&randmatrix) { None => { }, Some(i) => { assert!(na::approx_eq(&(i * randmatrix), &na::one())) } } } ); ); macro_rules! test_transpose_mat_impl( ($t: ty) => ( for _ in 0usize .. 10000 { let randmatrix : $t = random(); assert!(na::transpose(&na::transpose(&randmatrix)) == randmatrix); } ); ); macro_rules! test_qr_impl( ($t: ty) => ( for _ in 0usize .. 10000 { let randmatrix : $t = random(); let (q, r) = na::qr(&randmatrix); let recomp = q * r; assert!(na::approx_eq(&randmatrix, &recomp)); } ); ); macro_rules! test_cholesky_impl( ($t: ty) => ( for _ in 0usize .. 10000 { // construct symmetric positive definite matrix let mut randmatrix : $t = random(); let mut diagmatrix : $t = Diagonal::from_diagonal(&na::diagonal(&randmatrix)); diagmatrix = na::abs(&diagmatrix) + 1.0; randmatrix = randmatrix * diagmatrix * na::transpose(&randmatrix); let result = na::cholesky(&randmatrix); assert!(result.is_ok()); let v = result.unwrap(); let recomp = v * na::transpose(&v); assert!(na::approx_eq(&randmatrix, &recomp)); } ); ); macro_rules! test_hessenberg_impl( ($t: ty) => ( for _ in 0usize .. 10000 { let randmatrix : $t = random(); let (q, h) = na::hessenberg(&randmatrix); let recomp = q * h * na::transpose(&q); let (rows, cols) = h.shape(); // Check if `h` has zero entries below the first subdiagonal if cols > 2 { for j in 0..(cols-2) { for i in (j+2)..rows { assert!(na::approx_eq(&h[(i,j)], &0.0f64)); } } } assert!(na::approx_eq(&randmatrix, &recomp)); } ); ); macro_rules! test_eigen_qr_impl( ($t: ty) => { for _ in 0usize .. 10000 { let randmatrix : $t = random(); // Make it symetric so that we can recompose the matrix to test at the end. let randmatrix = na::transpose(&randmatrix) * randmatrix; let (eigenvectors, eigenvalues) = na::eigen_qr(&randmatrix, &1e-13, 100); let diagonal: $t = Diagonal::from_diagonal(&eigenvalues); let recomp = eigenvectors * diagonal * na::transpose(&eigenvectors); println!("eigenvalues: {:?}", eigenvalues); println!(" matrix: {:?}", randmatrix); println!("recomp: {:?}", recomp); assert!(na::approx_eq_eps(&randmatrix, &recomp, &1.0e-2)); } for _ in 0usize .. 10000 { let randmatrix : $t = random(); // Take only diagonal part let randmatrix: $t = Diagonal::from_diagonal(&randmatrix.diagonal()); let (eigenvectors, eigenvalues) = na::eigen_qr(&randmatrix, &1e-13, 100); let diagonal: $t = Diagonal::from_diagonal(&eigenvalues); let recomp = eigenvectors * diagonal * na::transpose(&eigenvectors); println!("eigenvalues: {:?}", eigenvalues); println!(" matrix: {:?}", randmatrix); println!("recomp: {:?}", recomp); assert!(na::approx_eq_eps(&randmatrix, &recomp, &1.0e-2)); } } ); #[test] fn test_transpose_mat1() { test_transpose_mat_impl!(Matrix1); } #[test] fn test_transpose_mat2() { test_transpose_mat_impl!(Matrix2); } #[test] fn test_transpose_mat3() { test_transpose_mat_impl!(Matrix3); } #[test] fn test_transpose_mat4() { test_transpose_mat_impl!(Matrix4); } #[test] fn test_transpose_mat5() { test_transpose_mat_impl!(Matrix5); } #[test] fn test_transpose_mat6() { test_transpose_mat_impl!(Matrix6); } #[test] fn test_inverse_mat1() { test_inverse_mat_impl!(Matrix1); } #[test] fn test_inverse_mat2() { test_inverse_mat_impl!(Matrix2); } #[test] fn test_inverse_mat3() { test_inverse_mat_impl!(Matrix3); } #[test] fn test_inverse_mat4() { test_inverse_mat_impl!(Matrix4); } #[test] fn test_inverse_mat5() { test_inverse_mat_impl!(Matrix5); } #[test] fn test_inverse_mat6() { test_inverse_mat_impl!(Matrix6); } #[test] fn test_inverse_rot2() { test_inverse_mat_impl!(Rotation2); } #[test] fn test_inverse_rot3() { test_inverse_mat_impl!(Rotation3); } #[test] fn test_inverse_iso2() { test_inverse_mat_impl!(Isometry2); } #[test] fn test_inverse_iso3() { test_inverse_mat_impl!(Isometry3); } #[test] fn test_inverse_sim2() { test_inverse_mat_impl!(Similarity2); } #[test] fn test_inverse_sim3() { test_inverse_mat_impl!(Similarity3); } #[test] fn test_index_mat2() { let matrix: Matrix2 = random(); assert!(matrix[(0, 1)] == na::transpose(&matrix)[(1, 0)]); } #[test] fn test_mean_dmatrix() { let matrix = DMatrix::from_row_vector( 3, 3, &[ 1.0f64, 2.0, 3.0, 4.0f64, 5.0, 6.0, 7.0f64, 8.0, 9.0, ] ); assert!(na::approx_eq(&na::mean(&matrix), &DVector::from_slice(3, &[4.0f64, 5.0, 6.0]))); } #[test] fn test_covariance_dmatrix() { let matrix = DMatrix::from_row_vector( 5, 3, &[ 4.0f64, 2.0, 0.60, 4.2f64, 2.1, 0.59, 3.9f64, 2.0, 0.58, 4.3f64, 2.1, 0.62, 4.1f64, 2.2, 0.63 ] ); let expected = DMatrix::from_row_vector( 3, 3, &[ 0.025f64, 0.0075, 0.00175, 0.0075f64, 0.007, 0.00135, 0.00175f64, 0.00135, 0.00043 ] ); assert!(na::approx_eq(&na::covariance(&matrix), &expected)); } #[test] fn test_transpose_dmatrix() { let matrix = DMatrix::from_row_vector( 8, 4, &[ 1u32,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); assert!(na::transpose(&na::transpose(&matrix)) == matrix); } #[test] fn test_row_dmatrix() { let matrix = DMatrix::from_row_vector( 8, 4, &[ 1u32,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); assert_eq!(&DVector::from_slice(4, &[1u32, 2, 3, 4]), &matrix.row(0)); assert_eq!(&DVector::from_slice(4, &[5u32, 6, 7, 8]), &matrix.row(1)); assert_eq!(&DVector::from_slice(4, &[9u32, 10, 11, 12]), &matrix.row(2)); assert_eq!(&DVector::from_slice(4, &[13u32, 14, 15, 16]), &matrix.row(3)); assert_eq!(&DVector::from_slice(4, &[17u32, 18, 19, 20]), &matrix.row(4)); assert_eq!(&DVector::from_slice(4, &[21u32, 22, 23, 24]), &matrix.row(5)); assert_eq!(&DVector::from_slice(4, &[25u32, 26, 27, 28]), &matrix.row(6)); assert_eq!(&DVector::from_slice(4, &[29u32, 30, 31, 32]), &matrix.row(7)); } #[test] fn test_row_slice_dmatrix() { let matrix = DMatrix::from_row_vector( 5, 4, &[ 1u32,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ] ); assert_eq!(&DVector::from_slice(4, &[1u32, 2, 3, 4]), &matrix.row_slice(0, 0, 4)); assert_eq!(&DVector::from_slice(2, &[1u32, 2]), &matrix.row_slice(0, 0, 2)); assert_eq!(&DVector::from_slice(2, &[10u32, 11]), &matrix.row_slice(2, 1, 3)); assert_eq!(&DVector::from_slice(2, &[19u32, 20]), &matrix.row_slice(4, 2, 4)); } #[test] fn test_column_dmatrix() { let matrix = DMatrix::from_row_vector( 8, 4, &[ 1u32,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); assert_eq!(&DVector::from_slice(8, &[1u32, 5, 9, 13, 17, 21, 25, 29]), &matrix.column(0)); assert_eq!(&DVector::from_slice(8, &[2u32, 6, 10, 14, 18, 22, 26, 30]), &matrix.column(1)); assert_eq!(&DVector::from_slice(8, &[3u32, 7, 11, 15, 19, 23, 27, 31]), &matrix.column(2)); assert_eq!(&DVector::from_slice(8, &[4u32, 8, 12, 16, 20, 24, 28, 32]), &matrix.column(3)); } #[test] fn test_column_slice_dmatrix() { let matrix = DMatrix::from_row_vector( 8, 4, &[ 1u32,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); assert_eq!(&DVector::from_slice(8, &[1u32, 5, 9, 13, 17, 21, 25, 29]), &matrix.column_slice(0, 0, 8)); assert_eq!(&DVector::from_slice(3, &[1u32, 5, 9]), &matrix.column_slice(0, 0, 3)); assert_eq!(&DVector::from_slice(5, &[11u32, 15, 19, 23, 27]), &matrix.column_slice(2, 2, 7)); assert_eq!(&DVector::from_slice(2, &[28u32, 32]), &matrix.column_slice(3, 6, 8)); } #[test] fn test_dmat_from_vector() { let mat1 = DMatrix::from_row_vector( 8, 4, &[ 1i32, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ); let mat2 = DMatrix::from_column_vector( 8, 4, &[ 1i32, 5, 9, 13, 17, 21, 25, 29, 2i32, 6, 10, 14, 18, 22, 26, 30, 3i32, 7, 11, 15, 19, 23, 27, 31, 4i32, 8, 12, 16, 20, 24, 28, 32 ] ); println!("mat1: {:?}, mat2: {:?}", mat1, mat2); assert!(mat1 == mat2); } #[test] fn test_dmat_addition() { let mat1 = DMatrix::from_row_vector( 2, 2, &[ 1.0, 2.0, 3.0, 4.0 ] ); let mat2 = DMatrix::from_row_vector( 2, 2, &[ 10.0, 20.0, 30.0, 40.0 ] ); let res = DMatrix::from_row_vector( 2, 2, &[ 11.0, 22.0, 33.0, 44.0 ] ); assert!((mat1.clone() + mat2.clone()) == res); assert!((mat1.clone() + &mat2) == res); assert!((&mat1 + mat2) == res); } #[test] fn test_dmat_multiplication() { let mat1 = DMatrix::from_row_vector( 2, 2, &[ 1.0, 2.0, 3.0, 4.0 ] ); let mat2 = DMatrix::from_row_vector( 2, 2, &[ 10.0, 20.0, 30.0, 40.0 ] ); let res = DMatrix::from_row_vector( 2, 2, &[ 70.0, 100.0, 150.0, 220.0 ] ); assert!((mat1.clone() * mat2.clone()) == res); assert!((&mat1 * mat2.clone()) == res); assert!((&mat1 * &mat2) == res); assert!((mat1 * &mat2) == res); } // Tests multiplication of rectangular (non-square) matrices. #[test] fn test_dmat_multiplication_rect() { let mat1 = DMatrix::from_row_vector( 1, 2, &[ 1.0, 2.0, ] ); let mat2 = DMatrix::from_row_vector( 2, 3, &[ 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ] ); let res = DMatrix::from_row_vector( 1, 3, &[ 15.0, 18.0, 21.0, ] ); assert!((mat1.clone() * mat2.clone()) == res); assert!((&mat1 * mat2.clone()) == res); assert!((mat1.clone() * &mat2) == res); assert!((&mat1 * &mat2) == res); } #[test] fn test_dmat_subtraction() { let mat1 = DMatrix::from_row_vector( 2, 2, &[ 1.0, 2.0, 3.0, 4.0 ] ); let mat2 = DMatrix::from_row_vector( 2, 2, &[ 10.0, 20.0, 30.0, 40.0 ] ); let res = DMatrix::from_row_vector( 2, 2, &[ -09.0, -18.0, -27.0, -36.0 ] ); assert!((mat1.clone() - mat2.clone()) == res); assert!((&mat1 - mat2.clone()) == res); assert!((mat1 - &mat2) == res); } #[test] fn test_dmat_column() { let matrix = DMatrix::from_row_vector( 3, 3, &[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ] ); assert!(matrix.column(1) == DVector::from_slice(3, &[2.0, 5.0, 8.0])); } #[test] fn test_dmat_set_column() { let mut matrix = DMatrix::from_row_vector( 3, 3, &[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ] ); matrix.set_column(1, DVector::from_slice(3, &[12.0, 15.0, 18.0])); let expected = DMatrix::from_row_vector( 3, 3, &[ 1.0, 12.0, 3.0, 4.0, 15.0, 6.0, 7.0, 18.0, 9.0, ] ); assert!(matrix == expected); } #[test] fn test_dmat_row() { let matrix = DMatrix::from_row_vector( 3, 3, &[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ] ); assert!(matrix.row(1) == DVector::from_slice(3, &[4.0, 5.0, 6.0])); } #[test] fn test_dmat_set_row() { let mut matrix = DMatrix::from_row_vector( 3, 3, &[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ] ); matrix.set_row(1, DVector::from_slice(3, &[14.0, 15.0, 16.0])); let expected = DMatrix::from_row_vector( 3, 3, &[ 1.0, 2.0, 3.0, 14.0, 15.0, 16.0, 7.0, 8.0, 9.0, ] ); assert!(matrix == expected); } /* FIXME: review qr decomposition to make it work with DMatrix. #[test] fn test_qr() { for _ in 0usize .. 10 { let dim1: usize = random(); let dim2: usize = random(); let rows = min(40, max(dim1, dim2)); let cols = min(40, min(dim1, dim2)); let randmatrix: DMatrix = DMatrix::new_random(rows, cols); let (q, r) = na::qr(&randmatrix); let recomp = q * r; assert!(na::approx_eq(&randmatrix, &recomp)); } } */ #[test] fn test_qr_mat1() { test_qr_impl!(Matrix1); } #[test] fn test_qr_mat2() { test_qr_impl!(Matrix2); } #[test] fn test_qr_mat3() { test_qr_impl!(Matrix3); } #[test] fn test_qr_mat4() { test_qr_impl!(Matrix4); } #[test] fn test_qr_mat5() { test_qr_impl!(Matrix5); } #[test] fn test_qr_mat6() { test_qr_impl!(Matrix6); } #[test] fn test_eigen_qr_mat1() { test_eigen_qr_impl!(Matrix1); } #[test] fn test_eigen_qr_mat2() { test_eigen_qr_impl!(Matrix2); } #[test] fn test_eigen_qr_mat3() { test_eigen_qr_impl!(Matrix3); } #[test] fn test_eigen_qr_mat4() { test_eigen_qr_impl!(Matrix4); } #[test] fn test_eigen_qr_mat5() { test_eigen_qr_impl!(Matrix5); } #[test] fn test_eigen_qr_mat6() { test_eigen_qr_impl!(Matrix6); } #[test] fn test_from_fn() { let actual: DMatrix = DMatrix::from_fn(3, 4, |i, j| 10 * i + j); let expected: DMatrix = DMatrix::from_row_vector(3, 4, &[ 0_0, 0_1, 0_2, 0_3, 1_0, 1_1, 1_2, 1_3, 2_0, 2_1, 2_2, 2_3 ]); assert_eq!(actual, expected); } #[test] fn test_row_3() { let matrix = Matrix3::new(0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0); let second_row = matrix.row(1); let second_col = matrix.column(1); assert!(second_row == Vector3::new(3.0, 4.0, 5.0)); assert!(second_col == Vector3::new(1.0, 4.0, 7.0)); } #[test] fn test_cholesky_const() { let a : Matrix3 = Matrix3::::new(1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 3.0); let g : Matrix3 = Matrix3::::new(1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0); let result = na::cholesky(&a); assert!(result.is_ok()); let v = result.unwrap(); assert!(na::approx_eq(&v, &g)); let recomp = v * na::transpose(&v); assert!(na::approx_eq(&recomp, &a)); } #[test] fn test_cholesky_not_spd() { let a : Matrix3 = Matrix3::::new(1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 1.0, 1.0); let result = na::cholesky(&a); assert!(result.is_err()); } #[test] fn test_cholesky_not_symmetric() { let a : Matrix2 = Matrix2::::new(1.0, 1.0, -1.0, 1.0); let result = na::cholesky(&a); assert!(result.is_err()); } #[test] fn test_cholesky_mat1() { test_cholesky_impl!(Matrix1); } #[test] fn test_cholesky_mat2() { test_cholesky_impl!(Matrix2); } #[test] fn test_cholesky_mat3() { test_cholesky_impl!(Matrix3); } #[test] fn test_cholesky_mat4() { test_cholesky_impl!(Matrix4); } #[test] fn test_cholesky_mat5() { test_cholesky_impl!(Matrix5); } #[test] fn test_cholesky_mat6() { test_cholesky_impl!(Matrix6); } #[test] fn test_hessenberg_mat1() { test_hessenberg_impl!(Matrix1); } #[test] fn test_hessenberg_mat2() { test_hessenberg_impl!(Matrix2); } #[test] fn test_hessenberg_mat3() { test_hessenberg_impl!(Matrix3); } #[test] fn test_hessenberg_mat4() { test_hessenberg_impl!(Matrix4); } #[test] fn test_hessenberg_mat5() { test_hessenberg_impl!(Matrix5); } #[test] fn test_hessenberg_mat6() { test_hessenberg_impl!(Matrix6); } #[test] fn test_transpose_square_matrix() { let column_major_matrix = &[0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]; let num_rows = 4; let num_cols = 4; let mut matrix = DMatrix::from_column_vector(num_rows, num_cols, column_major_matrix); matrix.transpose_mut(); for i in 0..num_rows { assert_eq!(&[0, 1, 2, 3], &matrix.row_slice(i, 0, num_cols)[..]); } } #[test] fn test_outer_dvector() { let vector = DVector::from_slice(5, &[ 1.0, 2.0, 3.0, 4.0, 5.0 ]); let row = DMatrix::from_row_vector(1, 5, &vector[..]); assert_eq!(row.transpose() * row, na::outer(&vector, &vector)) }