extern crate proc_macro; use syn::{Expr}; use syn::parse::{Parse, ParseStream, Result, Error}; use syn::punctuated::{Punctuated}; use syn::{parse_macro_input, Token}; use quote::{quote, TokenStreamExt, ToTokens}; use proc_macro::TokenStream; use proc_macro2::{TokenStream as TokenStream2, Delimiter, TokenTree, Spacing}; use proc_macro2::{Group, Punct}; struct Matrix { // Represent the matrix as a row-major vector of vectors of expressions rows: Vec>, ncols: usize, } impl Matrix { fn nrows(&self) -> usize { self.rows.len() } fn ncols(&self) -> usize { self.ncols } /// Produces a stream of tokens representing this matrix as a column-major nested array. fn to_col_major_nested_array_tokens(&self) -> TokenStream2 { let mut result = TokenStream2::new(); for j in 0 .. self.ncols() { let mut col = TokenStream2::new(); let col_iter = (0 .. self.nrows()) .map(move |i| &self.rows[i][j]); col.append_separated(col_iter, Punct::new(',', Spacing::Alone)); result.append(Group::new(Delimiter::Bracket, col)); result.append(Punct::new(',', Spacing::Alone)); } TokenStream2::from(TokenTree::Group(Group::new(Delimiter::Bracket, result))) } /// Produces a stream of tokens representing this matrix as a column-major flat array /// (suitable for representing e.g. a `DMatrix`). fn to_col_major_flat_array_tokens(&self) -> TokenStream2 { let mut data = TokenStream2::new(); for j in 0 .. self.ncols() { for i in 0 .. self.nrows() { self.rows[i][j].to_tokens(&mut data); data.append(Punct::new(',', Spacing::Alone)); } } TokenStream2::from(TokenTree::Group(Group::new(Delimiter::Bracket, data))) } } type MatrixRowSyntax = Punctuated; impl Parse for Matrix { fn parse(input: ParseStream) -> Result { let mut rows = Vec::new(); let mut ncols = None; while !input.is_empty() { let row_span = input.span(); let row = MatrixRowSyntax::parse_separated_nonempty(input)?; if let Some(ncols) = ncols { if row.len() != ncols { let row_idx = rows.len(); let error_msg = format!( "Unexpected number of entries in row {}. Expected {}, found {} entries.", row_idx, ncols, row.len()); return Err(Error::new(row_span, error_msg)); } } else { ncols = Some(row.len()); } rows.push(row.into_iter().collect()); // We've just read a row, so if there are more tokens, there must be a semi-colon, // otherwise the input is malformed if !input.is_empty() { input.parse::()?; } } Ok(Self { rows, ncols: ncols.unwrap_or(0) }) } } /// Construct a fixed-size matrix directly from data. /// /// This macro facilitates easy construction of matrices when the entries of the matrix are known /// (either as constants or expressions). This macro produces an instance of `SMatrix`. This means /// that the data of the matrix is stored on the stack, and its dimensions are fixed at /// compile-time. If you want to construct a dynamic matrix, use [`dmatrix!`] instead. /// /// `matrix!` is intended to be both the simplest and most efficient way to construct (small) /// matrices, and can also be used in *const fn* contexts. /// /// The syntax is MATLAB-like. Column elements are separated by a comma (`,`), and a semi-colon /// (`;`) designates that a new row begins. /// /// # Examples /// /// ``` /// use nalgebra::matrix; /// /// // Produces a Matrix3<_> == SMatrix<_, 3, 3> /// let a = matrix![1, 2, 3; /// 4, 5, 6; /// 7, 8, 9]; /// ``` /// /// You can construct matrices with arbitrary expressions for its elements: /// /// ``` /// use nalgebra::{matrix, Matrix2}; /// let theta = 0.45f64; /// /// let r = matrix![theta.cos(), - theta.sin(); /// theta.sin(), theta.cos()]; /// ``` #[proc_macro] pub fn matrix(stream: TokenStream) -> TokenStream { let matrix = parse_macro_input!(stream as Matrix); let row_dim = matrix.nrows(); let col_dim = matrix.ncols(); let array_tokens = matrix.to_col_major_nested_array_tokens(); // TODO: Use quote_spanned instead?? let output = quote! { nalgebra::SMatrix::<_, #row_dim, #col_dim> ::from_array_storage(nalgebra::ArrayStorage(#array_tokens)) }; proc_macro::TokenStream::from(output) } /// Construct a dynamic matrix directly from data. /// /// The syntax is exactly the same as for [`matrix!`], but instead of producing instances of /// `SMatrix`, it produces instances of `DMatrix`. At the moment it is not usable /// in `const fn` contexts. /// /// ``` /// use nalgebra::dmatrix; /// /// // Produces a DMatrix<_> /// let a = dmatrix![1, 2, 3; /// 4, 5, 6; /// 7, 8, 9]; /// ``` #[proc_macro] pub fn dmatrix(stream: TokenStream) -> TokenStream { let matrix = parse_macro_input!(stream as Matrix); let row_dim = matrix.nrows(); let col_dim = matrix.ncols(); let array_tokens = matrix.to_col_major_flat_array_tokens(); // TODO: Use quote_spanned instead?? let output = quote! { nalgebra::DMatrix::<_> ::from_vec_storage(nalgebra::VecStorage::new( nalgebra::Dynamic::new(#row_dim), nalgebra::Dynamic::new(#col_dim), vec!#array_tokens)) }; proc_macro::TokenStream::from(output) } struct Vector { elements: Vec, } impl Vector { fn to_array_tokens(&self) -> TokenStream2 { let mut data = TokenStream2::new(); data.append_separated(&self.elements, Punct::new(',', Spacing::Alone)); TokenStream2::from(TokenTree::Group(Group::new(Delimiter::Bracket, data))) } fn len(&self) -> usize { self.elements.len() } } impl Parse for Vector { fn parse(input: ParseStream) -> Result { // The syntax of a vector is just the syntax of a single matrix row if input.is_empty() { Ok(Self { elements: Vec::new() }) } else { let elements = MatrixRowSyntax::parse_separated_nonempty(input)?.into_iter().collect(); Ok(Self { elements }) } } } /// Construct a fixed-size column vector directly from data. /// /// Similarly to [`matrix!`], this macro facilitates easy construction of fixed-size vectors. /// However, whereas the [`matrix!`] macro expects each row to be separated by a semi-colon, /// the syntax of this macro is instead similar to `vec!`, in that the elements of the vector /// are simply listed consecutively. /// /// `vector!` is intended to be the most readable and performant way of constructing small, /// fixed-size vectors, and it is usable in `const fn` contexts. /// /// ## Examples /// /// ``` /// use nalgebra::vector; /// /// // Produces a Vector3<_> == SVector<_, 3> /// let v = vector![1, 2, 3]; /// ``` #[proc_macro] pub fn vector(stream: TokenStream) -> TokenStream { let vector = parse_macro_input!(stream as Vector); let len = vector.len(); let array_tokens = vector.to_array_tokens(); let output = quote! { nalgebra::SVector::<_, #len> ::from_array_storage(nalgebra::ArrayStorage([#array_tokens])) }; proc_macro::TokenStream::from(output) } /// Construct a dynamic column vector directly from data. /// /// The syntax is exactly the same as for [`vector!`], but instead of producing instances of /// `SVector`, it produces instances of `DVector`. At the moment it is not usable /// in `const fn` contexts. /// /// ``` /// use nalgebra::dvector; /// /// // Produces a DVector<_> /// let v = dvector![1, 2, 3]; /// ``` #[proc_macro] pub fn dvector(stream: TokenStream) -> TokenStream { let vector = parse_macro_input!(stream as Vector); let len = vector.len(); let array_tokens = vector.to_array_tokens(); let output = quote! { nalgebra::DVector::<_> ::from_vec_storage(nalgebra::VecStorage::new( nalgebra::Dynamic::new(#len), nalgebra::Const::<1>, vec!#array_tokens)) }; proc_macro::TokenStream::from(output) }