//! Construction of householder elementary reflections. use num::Zero; use alga::general::Complex; use allocator::Allocator; use base::{DefaultAllocator, MatrixMN, MatrixN, Unit, Vector, VectorN}; use dimension::Dim; use storage::{Storage, StorageMut}; use geometry::Reflection; /// Replaces `column` by the axis of the householder reflection that transforms `column` into /// `(+/-|column|, 0, ..., 0)`. /// /// The unit-length axis is output to `column`. Returns what would be the first component of /// `column` after reflection and `false` if no reflection was necessary. #[doc(hidden)] #[inline(always)] pub fn reflection_axis_mut>( column: &mut Vector, ) -> (N, bool) { let reflection_sq_norm = column.norm_squared(); let reflection_norm = reflection_sq_norm.sqrt(); let factor; let signed_norm; unsafe { let (modulus, sign) = column.vget_unchecked(0).to_exp(); signed_norm = sign.scale(reflection_norm); factor = (reflection_sq_norm + modulus * reflection_norm) * ::convert(2.0); *column.vget_unchecked_mut(0) += signed_norm; }; if !factor.is_zero() { column.unscale_mut(factor.sqrt()); (-signed_norm, true) } else { (-signed_norm, false) } } /// Uses an householder reflection to zero out the `icol`-th column, starting with the `shift + 1`-th /// subdiagonal element. #[doc(hidden)] pub fn clear_column_unchecked( matrix: &mut MatrixMN, diag_elt: &mut N, icol: usize, shift: usize, bilateral: Option<&mut VectorN>, ) where DefaultAllocator: Allocator + Allocator, { let (mut left, mut right) = matrix.columns_range_pair_mut(icol, icol + 1..); let mut axis = left.rows_range_mut(icol + shift..); let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis); *diag_elt = reflection_norm; if not_zero { let refl = Reflection::new(Unit::new_unchecked(axis), N::zero()); if let Some(mut work) = bilateral { refl.reflect_rows(&mut right, &mut work); } refl.reflect(&mut right.rows_range_mut(icol + shift..)); } } /// Uses an householder reflection to zero out the `irow`-th row, ending before the `shift + 1`-th /// superdiagonal element. #[doc(hidden)] pub fn clear_row_unchecked( matrix: &mut MatrixMN, diag_elt: &mut N, axis_packed: &mut VectorN, work: &mut VectorN, irow: usize, shift: usize, ) where DefaultAllocator: Allocator + Allocator + Allocator, { let (mut top, mut bottom) = matrix.rows_range_pair_mut(irow, irow + 1..); let mut axis = axis_packed.rows_range_mut(irow + shift..); axis.tr_copy_from(&top.columns_range(irow + shift..)); let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis); axis.conjugate_mut(); // So that reflect_rows actually cancels the first row. *diag_elt = reflection_norm; if not_zero { let refl = Reflection::new(Unit::new_unchecked(axis), N::zero()); refl.reflect_rows( &mut bottom.columns_range_mut(irow + shift..), &mut work.rows_range_mut(irow + 1..), ); top.columns_range_mut(irow + shift..) .tr_copy_from(&refl.axis()); } else { top.columns_range_mut(irow + shift..).tr_copy_from(&axis); } } /// Computes the orthogonal transformation described by the elementary reflector axices stored on /// the lower-diagonal element of the given matrix. /// matrices. #[doc(hidden)] pub fn assemble_q(m: &MatrixN) -> MatrixN where DefaultAllocator: Allocator { assert!(m.is_square()); let dim = m.data.shape().0; // NOTE: we could build the identity matrix and call p_mult on it. // Instead we don't so that we take in account the matrix sparseness. let mut res = MatrixN::identity_generic(dim, dim); for i in (0..dim.value() - 1).rev() { let axis = m.slice_range(i + 1.., i); let refl = Reflection::new(Unit::new_unchecked(axis), N::zero()); let mut res_rows = res.slice_range_mut(i + 1.., i..); refl.reflect(&mut res_rows); } res }