//! An implementation of the CSC sparse matrix format. use crate::{SparseFormatError, SparseFormatErrorKind}; use crate::pattern::{SparsityPattern, SparsityPatternFormatError, SparsityPatternIter}; use crate::csr::CsrMatrix; use crate::cs::{CsMatrix, CsLane, CsLaneMut, CsLaneIter, CsLaneIterMut}; use std::sync::Arc; use std::slice::{IterMut, Iter}; use num_traits::Zero; use nalgebra::Scalar; /// A CSC representation of a sparse matrix. /// /// The Compressed Sparse Column (CSC) format is well-suited as a general-purpose storage format /// for many sparse matrix applications. /// /// TODO: Storage explanation and examples /// #[derive(Debug, Clone, PartialEq, Eq)] pub struct CscMatrix { // Cols are major, rows are minor in the sparsity pattern cs: CsMatrix, } impl CscMatrix { /// Create a zero CSC matrix with no explicitly stored entries. pub fn new(nrows: usize, ncols: usize) -> Self { Self { cs: CsMatrix::new(ncols, nrows) } } /// The number of rows in the matrix. #[inline] pub fn nrows(&self) -> usize { self.cs.pattern().minor_dim() } /// The number of columns in the matrix. #[inline] pub fn ncols(&self) -> usize { self.cs.pattern().major_dim() } /// The number of non-zeros in the matrix. /// /// Note that this corresponds to the number of explicitly stored entries, *not* the actual /// number of algebraically zero entries in the matrix. Explicitly stored entries can still /// be zero. Corresponds to the number of entries in the sparsity pattern. #[inline] pub fn nnz(&self) -> usize { self.pattern().nnz() } /// The column offsets defining part of the CSC format. #[inline] pub fn col_offsets(&self) -> &[usize] { self.pattern().major_offsets() } /// The row indices defining part of the CSC format. #[inline] pub fn row_indices(&self) -> &[usize] { self.pattern().minor_indices() } /// The non-zero values defining part of the CSC format. #[inline] pub fn values(&self) -> &[T] { self.cs.values() } /// Mutable access to the non-zero values. #[inline] pub fn values_mut(&mut self) -> &mut [T] { self.cs.values_mut() } /// Try to construct a CSC matrix from raw CSC data. /// /// It is assumed that each column contains unique and sorted row indices that are in /// bounds with respect to the number of rows in the matrix. If this is not the case, /// an error is returned to indicate the failure. /// /// An error is returned if the data given does not conform to the CSC storage format. /// See the documentation for [CscMatrix](struct.CscMatrix.html) for more information. pub fn try_from_csc_data( num_rows: usize, num_cols: usize, col_offsets: Vec, row_indices: Vec, values: Vec, ) -> Result { let pattern = SparsityPattern::try_from_offsets_and_indices( num_cols, num_rows, col_offsets, row_indices) .map_err(pattern_format_error_to_csc_error)?; Self::try_from_pattern_and_values(Arc::new(pattern), values) } /// Try to construct a CSC matrix from a sparsity pattern and associated non-zero values. /// /// Returns an error if the number of values does not match the number of minor indices /// in the pattern. pub fn try_from_pattern_and_values(pattern: Arc, values: Vec) -> Result { if pattern.nnz() == values.len() { Ok(Self { cs: CsMatrix::from_pattern_and_values(pattern, values) }) } else { Err(SparseFormatError::from_kind_and_msg( SparseFormatErrorKind::InvalidStructure, "Number of values and row indices must be the same")) } } /// An iterator over non-zero triplets (i, j, v). /// /// The iteration happens in column-major fashion, meaning that j increases monotonically, /// and i increases monotonically within each row. /// /// Examples /// -------- /// ``` /// # use nalgebra_sparse::csc::CscMatrix; /// let col_offsets = vec![0, 2, 3, 4]; /// let row_indices = vec![0, 2, 1, 0]; /// let values = vec![1, 3, 2, 4]; /// let mut csc = CscMatrix::try_from_csc_data(4, 3, col_offsets, row_indices, values) /// .unwrap(); /// /// let triplets: Vec<_> = csc.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect(); /// assert_eq!(triplets, vec![(0, 0, 1), (2, 0, 3), (1, 1, 2), (0, 2, 4)]); /// ``` pub fn triplet_iter(&self) -> CscTripletIter { CscTripletIter { pattern_iter: self.pattern().entries(), values_iter: self.values().iter() } } /// A mutable iterator over non-zero triplets (i, j, v). /// /// Iteration happens in the same order as for [triplet_iter](#method.triplet_iter). /// /// Examples /// -------- /// ``` /// # use nalgebra_sparse::csc::CscMatrix; /// let col_offsets = vec![0, 2, 3, 4]; /// let row_indices = vec![0, 2, 1, 0]; /// let values = vec![1, 3, 2, 4]; /// // Using the same data as in the `triplet_iter` example /// let mut csc = CscMatrix::try_from_csc_data(4, 3, col_offsets, row_indices, values) /// .unwrap(); /// /// // Zero out lower-triangular terms /// csc.triplet_iter_mut() /// .filter(|(i, j, _)| j < i) /// .for_each(|(_, _, v)| *v = 0); /// /// let triplets: Vec<_> = csc.triplet_iter().map(|(i, j, v)| (i, j, *v)).collect(); /// assert_eq!(triplets, vec![(0, 0, 1), (2, 0, 0), (1, 1, 2), (0, 2, 4)]); /// ``` pub fn triplet_iter_mut(&mut self) -> CscTripletIterMut { let (pattern, values) = self.cs.pattern_and_values_mut(); CscTripletIterMut { pattern_iter: pattern.entries(), values_mut_iter: values.iter_mut() } } /// Return the column at the given column index. /// /// Panics /// ------ /// Panics if column index is out of bounds. #[inline] pub fn col(&self, index: usize) -> CscCol { self.get_col(index) .expect("Row index must be in bounds") } /// Mutable column access for the given column index. /// /// Panics /// ------ /// Panics if column index is out of bounds. #[inline] pub fn col_mut(&mut self, index: usize) -> CscColMut { self.get_col_mut(index) .expect("Row index must be in bounds") } /// Return the column at the given column index, or `None` if out of bounds. #[inline] pub fn get_col(&self, index: usize) -> Option> { self.cs .get_lane(index) .map(|lane| CscCol { lane }) } /// Mutable column access for the given column index, or `None` if out of bounds. #[inline] pub fn get_col_mut(&mut self, index: usize) -> Option> { self.cs .get_lane_mut(index) .map(|lane| CscColMut { lane }) } /// An iterator over columns in the matrix. pub fn col_iter(&self) -> CscColIter { CscColIter { lane_iter: CsLaneIter::new(self.pattern().as_ref(), self.values()) } } /// A mutable iterator over columns in the matrix. pub fn col_iter_mut(&mut self) -> CscColIterMut { let (pattern, values) = self.cs.pattern_and_values_mut(); CscColIterMut { lane_iter: CsLaneIterMut::new(pattern, values) } } /// Disassembles the CSC matrix into its underlying offset, index and value arrays. /// /// If the matrix contains the sole reference to the sparsity pattern, /// then the data is returned as-is. Otherwise, the sparsity pattern is cloned. /// /// Examples /// -------- /// /// ``` /// # use nalgebra_sparse::csc::CscMatrix; /// let col_offsets = vec![0, 2, 3, 4]; /// let row_indices = vec![0, 2, 1, 0]; /// let values = vec![1, 3, 2, 4]; /// let mut csc = CscMatrix::try_from_csc_data( /// 4, /// 3, /// col_offsets.clone(), /// row_indices.clone(), /// values.clone()) /// .unwrap(); /// let (col_offsets2, row_indices2, values2) = csc.disassemble(); /// assert_eq!(col_offsets2, col_offsets); /// assert_eq!(row_indices2, row_indices); /// assert_eq!(values2, values); /// ``` pub fn disassemble(self) -> (Vec, Vec, Vec) { self.cs.disassemble() } /// Returns the underlying sparsity pattern. /// /// The sparsity pattern is stored internally inside an `Arc`. This allows users to re-use /// the same sparsity pattern for multiple matrices without storing the same pattern multiple /// times in memory. pub fn pattern(&self) -> &Arc { self.cs.pattern() } /// Reinterprets the CSC matrix as its transpose represented by a CSR matrix. /// /// This operation does not touch the CSC data, and is effectively a no-op. pub fn transpose_as_csr(self) -> CsrMatrix { let (pattern, values) = self.cs.take_pattern_and_values(); CsrMatrix::try_from_pattern_and_values(pattern, values).unwrap() } } impl CscMatrix { /// Return the value in the matrix at the given global row/col indices, or `None` if out of /// bounds. /// /// If the indices are in bounds, but no explicitly stored entry is associated with it, /// `T::zero()` is returned. Note that this method offers no way of distinguishing /// explicitly stored zero entries from zero values that are only implicitly represented. /// /// Each call to this function incurs the cost of a binary search among the explicitly /// stored column entries for the given row. #[inline] pub fn get(&self, row_index: usize, col_index: usize) -> Option { self.get_col(row_index)?.get(col_index) } /// Same as `get`, but panics if indices are out of bounds. /// /// Panics /// ------ /// Panics if either index is out of bounds. #[inline] pub fn index(&self, row_index: usize, col_index: usize) -> T { self.get(row_index, col_index).unwrap() } } impl CscMatrix where T: Scalar + Zero { /// Compute the transpose of the matrix. pub fn transpose(&self) -> CscMatrix { CsrMatrix::from(self).transpose_as_csc() } } /// Convert pattern format errors into more meaningful CSC-specific errors. /// /// This ensures that the terminology is consistent: we are talking about rows and columns, /// not lanes, major and minor dimensions. fn pattern_format_error_to_csc_error(err: SparsityPatternFormatError) -> SparseFormatError { use SparsityPatternFormatError::*; use SparsityPatternFormatError::DuplicateEntry as PatternDuplicateEntry; use SparseFormatError as E; use SparseFormatErrorKind as K; match err { InvalidOffsetArrayLength => E::from_kind_and_msg( K::InvalidStructure, "Length of col offset array is not equal to ncols + 1."), InvalidOffsetFirstLast => E::from_kind_and_msg( K::InvalidStructure, "First or last col offset is inconsistent with format specification."), NonmonotonicOffsets => E::from_kind_and_msg( K::InvalidStructure, "Col offsets are not monotonically increasing."), NonmonotonicMinorIndices => E::from_kind_and_msg( K::InvalidStructure, "Row indices are not monotonically increasing (sorted) within each column."), MinorIndexOutOfBounds => E::from_kind_and_msg( K::IndexOutOfBounds, "Row indices are out of bounds."), PatternDuplicateEntry => E::from_kind_and_msg( K::DuplicateEntry, "Matrix data contains duplicate entries."), } } /// Iterator type for iterating over triplets in a CSC matrix. #[derive(Debug)] pub struct CscTripletIter<'a, T> { pattern_iter: SparsityPatternIter<'a>, values_iter: Iter<'a, T> } impl<'a, T> Iterator for CscTripletIter<'a, T> { type Item = (usize, usize, &'a T); fn next(&mut self) -> Option { let next_entry = self.pattern_iter.next(); let next_value = self.values_iter.next(); match (next_entry, next_value) { (Some((i, j)), Some(v)) => Some((j, i, v)), _ => None } } } /// Iterator type for mutably iterating over triplets in a CSC matrix. #[derive(Debug)] pub struct CscTripletIterMut<'a, T> { pattern_iter: SparsityPatternIter<'a>, values_mut_iter: IterMut<'a, T> } impl<'a, T> Iterator for CscTripletIterMut<'a, T> { type Item = (usize, usize, &'a mut T); #[inline] fn next(&mut self) -> Option { let next_entry = self.pattern_iter.next(); let next_value = self.values_mut_iter.next(); match (next_entry, next_value) { (Some((i, j)), Some(v)) => Some((j, i, v)), _ => None } } } /// An immutable representation of a column in a CSC matrix. #[derive(Debug, Clone, PartialEq, Eq)] pub struct CscCol<'a, T> { lane: CsLane<'a, T> } /// A mutable representation of a column in a CSC matrix. /// /// Note that only explicitly stored entries can be mutated. The sparsity pattern belonging /// to the column cannot be modified. #[derive(Debug, PartialEq, Eq)] pub struct CscColMut<'a, T> { lane: CsLaneMut<'a, T> } /// Implement the methods common to both CscCol and CscColMut macro_rules! impl_csc_col_common_methods { ($name:ty) => { impl<'a, T> $name { /// The number of global rows in the column. #[inline] pub fn nrows(&self) -> usize { self.lane.minor_dim } /// The number of non-zeros in this column. #[inline] pub fn nnz(&self) -> usize { self.lane.minor_indices.len() } /// The row indices corresponding to explicitly stored entries in this column. #[inline] pub fn row_indices(&self) -> &[usize] { self.lane.minor_indices } /// The values corresponding to explicitly stored entries in this column. #[inline] pub fn values(&self) -> &[T] { self.lane.values } } impl<'a, T: Clone + Zero> $name { /// Return the value in the matrix at the given global row index, or `None` if out of /// bounds. /// /// If the index is in bounds, but no explicitly stored entry is associated with it, /// `T::zero()` is returned. Note that this method offers no way of distinguishing /// explicitly stored zero entries from zero values that are only implicitly represented. /// /// Each call to this function incurs the cost of a binary search among the explicitly /// stored row entries for the current column. pub fn get(&self, global_row_index: usize) -> Option { let local_index = self.row_indices().binary_search(&global_row_index); if let Ok(local_index) = local_index { Some(self.values()[local_index].clone()) } else if global_row_index < self.lane.minor_dim { Some(T::zero()) } else { None } } } } } impl_csc_col_common_methods!(CscCol<'a, T>); impl_csc_col_common_methods!(CscColMut<'a, T>); impl<'a, T> CscColMut<'a, T> { /// Mutable access to the values corresponding to explicitly stored entries in this column. pub fn values_mut(&mut self) -> &mut [T] { self.lane.values } /// Provides simultaneous access to row indices and mutable values corresponding to the /// explicitly stored entries in this column. /// /// This method primarily facilitates low-level access for methods that process data stored /// in CSC format directly. pub fn rows_and_values_mut(&mut self) -> (&[usize], &mut [T]) { (self.lane.minor_indices, self.lane.values) } } /// Column iterator for [CscMatrix](struct.CscMatrix.html). pub struct CscColIter<'a, T> { lane_iter: CsLaneIter<'a, T> } impl<'a, T> Iterator for CscColIter<'a, T> { type Item = CscCol<'a, T>; fn next(&mut self) -> Option { self.lane_iter .next() .map(|lane| CscCol { lane }) } } /// Mutable column iterator for [CscMatrix](struct.CscMatrix.html). pub struct CscColIterMut<'a, T> { lane_iter: CsLaneIterMut<'a, T> } impl<'a, T> Iterator for CscColIterMut<'a, T> where T: 'a { type Item = CscColMut<'a, T>; fn next(&mut self) -> Option { self.lane_iter .next() .map(|lane| CscColMut { lane }) } }