#[cfg(feature="arbitrary")] use quickcheck::{Arbitrary, Gen}; use rand::{Rand, Rng}; #[cfg(feature = "serde-serialize")] use serde::{Serialize, Serializer, Deserialize, Deserializer}; use alga::general::Real; use core::{Scalar, SquareMatrix, OwnedSquareMatrix, ColumnVector, OwnedColumnVector, MatrixArray}; use core::dimension::{U1, U3, U4}; use core::storage::{OwnedStorage, Storage, StorageMut}; use core::allocator::OwnedAllocator; use core::helper; use geometry::{PointBase, OwnedPoint}; /// A 3D orthographic projection stored as an homogeneous 4x4 matrix. #[derive(Debug, Clone, Copy)] // FIXME: Hash pub struct OrthographicBase> { matrix: SquareMatrix } #[cfg(feature = "serde-serialize")] impl Serialize for OrthographicBase where N: Scalar, S: Storage, SquareMatrix: Serialize, { fn serialize(&self, serializer: T) -> Result where T: Serializer { self.matrix.serialize(serializer) } } #[cfg(feature = "serde-serialize")] impl<'de, N, S> Deserialize<'de> for OrthographicBase where N: Scalar, S: Storage, SquareMatrix: Deserialize<'de>, { fn deserialize(deserializer: T) -> Result where T: Deserializer<'de> { SquareMatrix::deserialize(deserializer).map(|x| OrthographicBase { matrix: x }) } } /// A 3D orthographic projection stored as a static homogeneous 4x4 matrix. pub type Orthographic3 = OrthographicBase>; impl Eq for OrthographicBase where N: Scalar + Eq, S: Storage { } impl> PartialEq for OrthographicBase { #[inline] fn eq(&self, right: &Self) -> bool { self.matrix == right.matrix } } impl OrthographicBase where N: Real, S: OwnedStorage, S::Alloc: OwnedAllocator { /// Creates a new orthographic projection matrix. #[inline] pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self { assert!(left < right, "The left corner must be farther than the right corner."); assert!(bottom < top, "The top corner must be higher than the bottom corner."); assert!(znear < zfar, "The far plane must be farther than the near plane."); let matrix = SquareMatrix::::identity(); let mut res = Self::from_matrix_unchecked(matrix); res.set_left_and_right(left, right); res.set_bottom_and_top(bottom, top); res.set_znear_and_zfar(znear, zfar); res } /// Wraps the given matrix to interpret it as a 3D orthographic matrix. /// /// It is not checked whether or not the given matrix actually represents an orthographic /// projection. #[inline] pub fn from_matrix_unchecked(matrix: SquareMatrix) -> Self { OrthographicBase { matrix: matrix } } /// Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view. #[inline] pub fn from_fov(aspect: N, vfov: N, znear: N, zfar: N) -> Self { assert!(znear < zfar, "The far plane must be farther than the near plane."); assert!(!relative_eq!(aspect, N::zero()), "The apsect ratio must not be zero."); let half: N = ::convert(0.5); let width = zfar * (vfov * half).tan(); let height = width / aspect; Self::new(-width * half, width * half, -height * half, height * half, znear, zfar) } } impl> OrthographicBase { /// A reference to the underlying homogeneous transformation matrix. #[inline] pub fn as_matrix(&self) -> &SquareMatrix { &self.matrix } /// Retrieves the underlying homogeneous matrix. #[inline] pub fn unwrap(self) -> SquareMatrix { self.matrix } /// Retrieves the inverse of the underlying homogeneous matrix. #[inline] pub fn inverse(&self) -> OwnedSquareMatrix { let mut res = self.to_homogeneous(); let inv_m11 = N::one() / self.matrix[(0, 0)]; let inv_m22 = N::one() / self.matrix[(1, 1)]; let inv_m33 = N::one() / self.matrix[(2, 2)]; res[(0, 0)] = inv_m11; res[(1, 1)] = inv_m22; res[(2, 2)] = inv_m33; res[(0, 3)] = -self.matrix[(0, 3)] * inv_m11; res[(1, 3)] = -self.matrix[(1, 3)] * inv_m22; res[(2, 3)] = -self.matrix[(2, 3)] * inv_m33; res } /// Computes the corresponding homogeneous matrix. #[inline] pub fn to_homogeneous(&self) -> OwnedSquareMatrix { self.matrix.clone_owned() } /// The smallest x-coordinate of the view cuboid. #[inline] pub fn left(&self) -> N { (-N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)] } /// The largest x-coordinate of the view cuboid. #[inline] pub fn right(&self) -> N { (N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)] } /// The smallest y-coordinate of the view cuboid. #[inline] pub fn bottom(&self) -> N { (-N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)] } /// The largest y-coordinate of the view cuboid. #[inline] pub fn top(&self) -> N { (N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)] } /// The near plane offset of the view cuboid. #[inline] pub fn znear(&self) -> N { (N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)] } /// The far plane offset of the view cuboid. #[inline] pub fn zfar(&self) -> N { (-N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)] } // FIXME: when we get specialization, specialize the Mul impl instead. /// Projects a point. Faster than matrix multiplication. #[inline] pub fn project_point(&self, p: &PointBase) -> OwnedPoint where SB: Storage { OwnedPoint::::new( self.matrix[(0, 0)] * p[0] + self.matrix[(0, 3)], self.matrix[(1, 1)] * p[1] + self.matrix[(1, 3)], self.matrix[(2, 2)] * p[2] + self.matrix[(2, 3)] ) } /// Un-projects a point. Faster than multiplication by the underlying matrix inverse. #[inline] pub fn unproject_point(&self, p: &PointBase) -> OwnedPoint where SB: Storage { OwnedPoint::::new( (p[0] - self.matrix[(0, 3)]) / self.matrix[(0, 0)], (p[1] - self.matrix[(1, 3)]) / self.matrix[(1, 1)], (p[2] - self.matrix[(2, 3)]) / self.matrix[(2, 2)] ) } // FIXME: when we get specialization, specialize the Mul impl instead. /// Projects a vector. Faster than matrix multiplication. #[inline] pub fn project_vector(&self, p: &ColumnVector) -> OwnedColumnVector where SB: Storage { OwnedColumnVector::::new( self.matrix[(0, 0)] * p[0], self.matrix[(1, 1)] * p[1], self.matrix[(2, 2)] * p[2] ) } } impl> OrthographicBase { /// Sets the smallest x-coordinate of the view cuboid. #[inline] pub fn set_left(&mut self, left: N) { let right = self.right(); self.set_left_and_right(left, right); } /// Sets the largest x-coordinate of the view cuboid. #[inline] pub fn set_right(&mut self, right: N) { let left = self.left(); self.set_left_and_right(left, right); } /// Sets the smallest y-coordinate of the view cuboid. #[inline] pub fn set_bottom(&mut self, bottom: N) { let top = self.top(); self.set_bottom_and_top(bottom, top); } /// Sets the largest y-coordinate of the view cuboid. #[inline] pub fn set_top(&mut self, top: N) { let bottom = self.bottom(); self.set_bottom_and_top(bottom, top); } /// Sets the near plane offset of the view cuboid. #[inline] pub fn set_znear(&mut self, znear: N) { let zfar = self.zfar(); self.set_znear_and_zfar(znear, zfar); } /// Sets the far plane offset of the view cuboid. #[inline] pub fn set_zfar(&mut self, zfar: N) { let znear = self.znear(); self.set_znear_and_zfar(znear, zfar); } /// Sets the view cuboid coordinates along the `x` axis. #[inline] pub fn set_left_and_right(&mut self, left: N, right: N) { assert!(left < right, "The left corner must be farther than the right corner."); self.matrix[(0, 0)] = ::convert::<_, N>(2.0) / (right - left); self.matrix[(0, 3)] = -(right + left) / (right - left); } /// Sets the view cuboid coordinates along the `y` axis. #[inline] pub fn set_bottom_and_top(&mut self, bottom: N, top: N) { assert!(bottom < top, "The top corner must be higher than the bottom corner."); self.matrix[(1, 1)] = ::convert::<_, N>(2.0) / (top - bottom); self.matrix[(1, 3)] = -(top + bottom) / (top - bottom); } /// Sets the near and far plane offsets of the view cuboid. #[inline] pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) { assert!(!relative_eq!(zfar - znear, N::zero()), "The near-plane and far-plane must not be superimposed."); self.matrix[(2, 2)] = -::convert::<_, N>(2.0) / (zfar - znear); self.matrix[(2, 3)] = -(zfar + znear) / (zfar - znear); } } impl Rand for OrthographicBase where N: Real + Rand, S: OwnedStorage, S::Alloc: OwnedAllocator { fn rand(r: &mut R) -> Self { let left = Rand::rand(r); let right = helper::reject_rand(r, |x: &N| *x > left); let bottom = Rand::rand(r); let top = helper::reject_rand(r, |x: &N| *x > bottom); let znear = Rand::rand(r); let zfar = helper::reject_rand(r, |x: &N| *x > znear); Self::new(left, right, bottom, top, znear, zfar) } } #[cfg(feature="arbitrary")] impl Arbitrary for OrthographicBase where N: Real + Arbitrary, S: OwnedStorage + Send, S::Alloc: OwnedAllocator { fn arbitrary(g: &mut G) -> Self { let left = Arbitrary::arbitrary(g); let right = helper::reject(g, |x: &N| *x > left); let bottom = Arbitrary::arbitrary(g); let top = helper::reject(g, |x: &N| *x > bottom); let znear = Arbitrary::arbitrary(g); let zfar = helper::reject(g, |x: &N| *x > znear); Self::new(left, right, bottom, top, znear, zfar) } }