// Matrix properties checks. use approx::RelativeEq; use num::{One, Zero}; use simba::scalar::{ClosedAdd, ClosedMul, ComplexField, RealField}; use crate::base::allocator::Allocator; use crate::base::dimension::{Dim, DimMin}; use crate::base::storage::Storage; use crate::base::{DefaultAllocator, Matrix, Scalar, SquareMatrix}; impl> Matrix { /// The total number of elements of this matrix. /// /// # Examples: /// /// ``` /// # use nalgebra::Matrix3x4; /// let mat = Matrix3x4::::zeros(); /// assert_eq!(mat.len(), 12); /// ``` #[inline] pub fn len(&self) -> usize { let (nrows, ncols) = self.shape(); nrows * ncols } /// Returns true if the matrix contains no elements. /// /// # Examples: /// /// ``` /// # use nalgebra::Matrix3x4; /// let mat = Matrix3x4::::zeros(); /// assert!(!mat.is_empty()); /// ``` #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Indicates if this is a square matrix. #[inline] pub fn is_square(&self) -> bool { let (nrows, ncols) = self.shape(); nrows == ncols } // TODO: RelativeEq prevents us from using those methods on integer matrices… /// Indicated if this is the identity matrix within a relative error of `eps`. /// /// If the matrix is diagonal, this checks that diagonal elements (i.e. at coordinates `(i, i)` /// for i from `0` to `min(R, C)`) are equal one; and that all other elements are zero. #[inline] pub fn is_identity(&self, eps: N::Epsilon) -> bool where N: Zero + One + RelativeEq, N::Epsilon: Copy, { let (nrows, ncols) = self.shape(); let d; if nrows > ncols { d = ncols; for i in d..nrows { for j in 0..ncols { if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) { return false; } } } } else { // nrows <= ncols d = nrows; for i in 0..nrows { for j in d..ncols { if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) { return false; } } } } // Off-diagonal elements of the sub-square matrix. for i in 1..d { for j in 0..i { // TODO: use unsafe indexing. if !relative_eq!(self[(i, j)], N::zero(), epsilon = eps) || !relative_eq!(self[(j, i)], N::zero(), epsilon = eps) { return false; } } } // Diagonal elements of the sub-square matrix. for i in 0..d { if !relative_eq!(self[(i, i)], N::one(), epsilon = eps) { return false; } } true } } impl> Matrix { /// Checks that `Mᵀ × M = Id`. /// /// In this definition `Id` is approximately equal to the identity matrix with a relative error /// equal to `eps`. #[inline] pub fn is_orthogonal(&self, eps: N::Epsilon) -> bool where N: Zero + One + ClosedAdd + ClosedMul + RelativeEq, S: Storage, N::Epsilon: Copy, DefaultAllocator: Allocator + Allocator, { (self.ad_mul(self)).is_identity(eps) } } impl> SquareMatrix where DefaultAllocator: Allocator, { /// Checks that this matrix is orthogonal and has a determinant equal to 1. #[inline] pub fn is_special_orthogonal(&self, eps: N) -> bool where D: DimMin, DefaultAllocator: Allocator<(usize, usize), D>, { self.is_square() && self.is_orthogonal(eps) && self.determinant() > N::zero() } /// Returns `true` if this matrix is invertible. #[inline] pub fn is_invertible(&self) -> bool { // TODO: improve this? self.clone_owned().try_inverse().is_some() } }