#[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; use num::Zero; use std::ops::MulAssign; use simba::scalar::RealField; use crate::ComplexHelper; use na::allocator::Allocator; use na::dimension::{Dim, U1}; use na::storage::Storage; use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN}; use lapack; /// Eigendecomposition of a real square symmetric matrix with real eigenvalues. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", serde(bound(serialize = "DefaultAllocator: Allocator + Allocator, VectorN: Serialize, MatrixN: Serialize")) )] #[cfg_attr( feature = "serde-serialize", serde(bound(deserialize = "DefaultAllocator: Allocator + Allocator, VectorN: Deserialize<'de>, MatrixN: Deserialize<'de>")) )] #[derive(Clone, Debug)] pub struct SymmetricEigen where DefaultAllocator: Allocator + Allocator, { /// The eigenvectors of the decomposed matrix. pub eigenvectors: MatrixN, /// The unsorted eigenvalues of the decomposed matrix. pub eigenvalues: VectorN, } impl Copy for SymmetricEigen where DefaultAllocator: Allocator + Allocator, MatrixN: Copy, VectorN: Copy, { } impl SymmetricEigen where DefaultAllocator: Allocator + Allocator, { /// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`. /// /// Only the lower-triangular part of `m` is read. If `eigenvectors` is `false` then, the /// eigenvectors are not computed explicitly. Panics if the method did not converge. pub fn new(m: MatrixN) -> Self { let (vals, vecs) = Self::do_decompose(m, true).expect("SymmetricEigen: convergence failure."); Self { eigenvalues: vals, eigenvectors: vecs.unwrap(), } } /// Computes the eigenvalues and eigenvectors of the symmetric matrix `m`. /// /// Only the lower-triangular part of `m` is read. If `eigenvectors` is `false` then, the /// eigenvectors are not computed explicitly. Returns `None` if the method did not converge. pub fn try_new(m: MatrixN) -> Option { Self::do_decompose(m, true).map(|(vals, vecs)| SymmetricEigen { eigenvalues: vals, eigenvectors: vecs.unwrap(), }) } fn do_decompose( mut m: MatrixN, eigenvectors: bool, ) -> Option<(VectorN, Option>)> { assert!( m.is_square(), "Unable to compute the eigenvalue decomposition of a non-square matrix." ); let jobz = if eigenvectors { b'V' } else { b'N' }; let nrows = m.data.shape().0; let n = nrows.value(); let lda = n as i32; let mut values = unsafe { Matrix::new_uninitialized_generic(nrows, U1) }; let mut info = 0; let lwork = N::xsyev_work_size(jobz, b'L', n as i32, m.as_mut_slice(), lda, &mut info); lapack_check!(info); let mut work = unsafe { crate::uninitialized_vec(lwork as usize) }; N::xsyev( jobz, b'L', n as i32, m.as_mut_slice(), lda, values.as_mut_slice(), &mut work, lwork, &mut info, ); lapack_check!(info); let vectors = if eigenvectors { Some(m) } else { None }; Some((values, vectors)) } /// Computes only the eigenvalues of the input matrix. /// /// Panics if the method does not converge. pub fn eigenvalues(m: MatrixN) -> VectorN { Self::do_decompose(m, false) .expect("SymmetricEigen eigenvalues: convergence failure.") .0 } /// Computes only the eigenvalues of the input matrix. /// /// Returns `None` if the method does not converge. pub fn try_eigenvalues(m: MatrixN) -> Option> { Self::do_decompose(m, false).map(|res| res.0) } /// The determinant of the decomposed matrix. #[inline] pub fn determinant(&self) -> N { let mut det = N::one(); for e in self.eigenvalues.iter() { det *= *e; } det } /// Rebuild the original matrix. /// /// This is useful if some of the eigenvalues have been manually modified. pub fn recompose(&self) -> MatrixN { let mut u_t = self.eigenvectors.clone(); for i in 0..self.eigenvalues.len() { let val = self.eigenvalues[i]; u_t.column_mut(i).mul_assign(val); } u_t.transpose_mut(); &self.eigenvectors * u_t } } /* * * Lapack functions dispatch. * */ /// Trait implemented by scalars for which Lapack implements the eigendecomposition of symmetric /// real matrices. pub trait SymmetricEigenScalar: Scalar { #[allow(missing_docs)] fn xsyev( jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, w: &mut [Self], work: &mut [Self], lwork: i32, info: &mut i32, ); #[allow(missing_docs)] fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) -> i32; } macro_rules! real_eigensystem_scalar_impl ( ($N: ty, $xsyev: path) => ( impl SymmetricEigenScalar for $N { #[inline] fn xsyev(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, w: &mut [Self], work: &mut [Self], lwork: i32, info: &mut i32) { unsafe { $xsyev(jobz, uplo, n, a, lda, w, work, lwork, info) } } #[inline] fn xsyev_work_size(jobz: u8, uplo: u8, n: i32, a: &mut [Self], lda: i32, info: &mut i32) -> i32 { let mut work = [ Zero::zero() ]; let mut w = [ Zero::zero() ]; let lwork = -1 as i32; unsafe { $xsyev(jobz, uplo, n, a, lda, &mut w, &mut work, lwork, info); } ComplexHelper::real_part(work[0]) as i32 } } ) ); real_eigensystem_scalar_impl!(f32, lapack::ssyev); real_eigensystem_scalar_impl!(f64, lapack::dsyev);