use approx::{AbsDiffEq, RelativeEq, UlpsEq}; use num::One; use std::cmp::Ordering; use std::fmt; use std::hash; #[cfg(feature = "abomonation-serialize")] use std::io::{Result as IOResult, Write}; #[cfg(feature = "serde-serialize-no-std")] use serde::{Deserialize, Deserializer, Serialize, Serializer}; #[cfg(feature = "abomonation-serialize")] use abomonation::Abomonation; use simba::simd::SimdPartialOrd; use crate::base::allocator::Allocator; use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1}; use crate::base::iter::{MatrixIter, MatrixIterMut}; use crate::base::{Const, DefaultAllocator, OVector, SVector, Scalar}; /// A point in an euclidean space. /// /// The difference between a point and a vector is only semantic. See [the user guide](https://www.nalgebra.org/points_and_transformations/) /// for details on the distinction. The most notable difference that vectors ignore translations. /// In particular, an [`Isometry2`](crate::Isometry2) or [`Isometry3`](crate::Isometry3) will /// transform points by applying a rotation and a translation on them. However, these isometries /// will only apply rotations to vectors (when doing `isometry * vector`, the translation part of /// the isometry is ignored). /// /// # Construction /// * [From individual components `new`…](#construction-from-individual-components) /// * [Swizzling `xx`, `yxz`…](#swizzling) /// * [Other construction methods `origin`, `from_slice`, `from_homogeneous`…](#other-construction-methods) /// /// # Transformation /// Transforming a point by an [Isometry](crate::Isometry), [rotation](crate::Rotation), etc. can be /// achieved by multiplication, e.g., `isometry * point` or `rotation * point`. Some of these transformation /// may have some other methods, e.g., `isometry.inverse_transform_point(&point)`. See the documentation /// of said transformations for details. #[repr(C)] #[derive(Debug, Clone)] pub struct Point { /// The coordinates of this point, i.e., the shift from the origin. pub coords: SVector, } impl hash::Hash for Point { fn hash(&self, state: &mut H) { self.coords.hash(state) } } impl Copy for Point {} #[cfg(feature = "bytemuck")] unsafe impl bytemuck::Zeroable for Point where SVector: bytemuck::Zeroable { } #[cfg(feature = "bytemuck")] unsafe impl bytemuck::Pod for Point where T: Copy, SVector: bytemuck::Pod, { } #[cfg(feature = "serde-serialize-no-std")] impl Serialize for Point { fn serialize(&self, serializer: S) -> Result where S: Serializer, { self.coords.serialize(serializer) } } #[cfg(feature = "serde-serialize-no-std")] impl<'a, T: Scalar + Deserialize<'a>, const D: usize> Deserialize<'a> for Point { fn deserialize(deserializer: Des) -> Result where Des: Deserializer<'a>, { let coords = SVector::::deserialize(deserializer)?; Ok(Self::from(coords)) } } #[cfg(feature = "abomonation-serialize")] impl Abomonation for Point where T: Scalar, SVector: Abomonation, { unsafe fn entomb(&self, writer: &mut W) -> IOResult<()> { self.coords.entomb(writer) } fn extent(&self) -> usize { self.coords.extent() } unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> { self.coords.exhume(bytes) } } impl Point { /// Returns a point containing the result of `f` applied to each of its entries. /// /// # Example /// ``` /// # use nalgebra::{Point2, Point3}; /// let p = Point2::new(1.0, 2.0); /// assert_eq!(p.map(|e| e * 10.0), Point2::new(10.0, 20.0)); /// /// // This works in any dimension. /// let p = Point3::new(1.1, 2.1, 3.1); /// assert_eq!(p.map(|e| e as u32), Point3::new(1, 2, 3)); /// ``` #[inline] pub fn map T2>(&self, f: F) -> Point { self.coords.map(f).into() } /// Replaces each component of `self` by the result of a closure `f` applied on it. /// /// # Example /// ``` /// # use nalgebra::{Point2, Point3}; /// let mut p = Point2::new(1.0, 2.0); /// p.apply(|e| e * 10.0); /// assert_eq!(p, Point2::new(10.0, 20.0)); /// /// // This works in any dimension. /// let mut p = Point3::new(1.0, 2.0, 3.0); /// p.apply(|e| e * 10.0); /// assert_eq!(p, Point3::new(10.0, 20.0, 30.0)); /// ``` #[inline] pub fn apply T>(&mut self, f: F) { self.coords.apply(f) } /// Converts this point into a vector in homogeneous coordinates, i.e., appends a `1` at the /// end of it. /// /// This is the same as `.into()`. /// /// # Example /// ``` /// # use nalgebra::{Point2, Point3, Vector3, Vector4}; /// let p = Point2::new(10.0, 20.0); /// assert_eq!(p.to_homogeneous(), Vector3::new(10.0, 20.0, 1.0)); /// /// // This works in any dimension. /// let p = Point3::new(10.0, 20.0, 30.0); /// assert_eq!(p.to_homogeneous(), Vector4::new(10.0, 20.0, 30.0, 1.0)); /// ``` #[inline] pub fn to_homogeneous(&self) -> OVector, U1>> where T: One, Const: DimNameAdd, DefaultAllocator: Allocator, U1>>, { let mut res = unsafe { crate::unimplemented_or_uninitialized_generic!( , U1> as DimName>::name(), Const::<1> ) }; res.fixed_slice_mut::(0, 0).copy_from(&self.coords); res[(D, 0)] = T::one(); res } /// Creates a new point with the given coordinates. #[deprecated(note = "Use Point::from(vector) instead.")] #[inline] pub fn from_coordinates(coords: SVector) -> Self { Self { coords } } /// The dimension of this point. /// /// # Example /// ``` /// # use nalgebra::{Point2, Point3}; /// let p = Point2::new(1.0, 2.0); /// assert_eq!(p.len(), 2); /// /// // This works in any dimension. /// let p = Point3::new(10.0, 20.0, 30.0); /// assert_eq!(p.len(), 3); /// ``` #[inline] pub fn len(&self) -> usize { self.coords.len() } /// Returns true if the point contains no elements. /// /// # Example /// ``` /// # use nalgebra::{Point2, Point3}; /// let p = Point2::new(1.0, 2.0); /// assert!(!p.is_empty()); /// ``` #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// The stride of this point. This is the number of buffer element separating each component of /// this point. #[inline] #[deprecated(note = "This methods is no longer significant and will always return 1.")] pub fn stride(&self) -> usize { self.coords.strides().0 } /// Iterates through this point coordinates. /// /// # Example /// ``` /// # use nalgebra::Point3; /// let p = Point3::new(1.0, 2.0, 3.0); /// let mut it = p.iter().cloned(); /// /// assert_eq!(it.next(), Some(1.0)); /// assert_eq!(it.next(), Some(2.0)); /// assert_eq!(it.next(), Some(3.0)); /// assert_eq!(it.next(), None); #[inline] pub fn iter( &self, ) -> MatrixIter, Const<1>, >>::Buffer> { self.coords.iter() } /// Gets a reference to i-th element of this point without bound-checking. #[inline] pub unsafe fn get_unchecked(&self, i: usize) -> &T { self.coords.vget_unchecked(i) } /// Mutably iterates through this point coordinates. /// /// # Example /// ``` /// # use nalgebra::Point3; /// let mut p = Point3::new(1.0, 2.0, 3.0); /// /// for e in p.iter_mut() { /// *e *= 10.0; /// } /// /// assert_eq!(p, Point3::new(10.0, 20.0, 30.0)); #[inline] pub fn iter_mut( &mut self, ) -> MatrixIterMut, Const<1>, >>::Buffer> { self.coords.iter_mut() } /// Gets a mutable reference to i-th element of this point without bound-checking. #[inline] pub unsafe fn get_unchecked_mut(&mut self, i: usize) -> &mut T { self.coords.vget_unchecked_mut(i) } /// Swaps two entries without bound-checking. #[inline] pub unsafe fn swap_unchecked(&mut self, i1: usize, i2: usize) { self.coords.swap_unchecked((i1, 0), (i2, 0)) } } impl AbsDiffEq for Point where T::Epsilon: Copy, { type Epsilon = T::Epsilon; #[inline] fn default_epsilon() -> Self::Epsilon { T::default_epsilon() } #[inline] fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool { self.coords.abs_diff_eq(&other.coords, epsilon) } } impl RelativeEq for Point where T::Epsilon: Copy, { #[inline] fn default_max_relative() -> Self::Epsilon { T::default_max_relative() } #[inline] fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool { self.coords .relative_eq(&other.coords, epsilon, max_relative) } } impl UlpsEq for Point where T::Epsilon: Copy, { #[inline] fn default_max_ulps() -> u32 { T::default_max_ulps() } #[inline] fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool { self.coords.ulps_eq(&other.coords, epsilon, max_ulps) } } impl Eq for Point {} impl PartialEq for Point { #[inline] fn eq(&self, right: &Self) -> bool { self.coords == right.coords } } impl PartialOrd for Point { #[inline] fn partial_cmp(&self, other: &Self) -> Option { self.coords.partial_cmp(&other.coords) } #[inline] fn lt(&self, right: &Self) -> bool { self.coords.lt(&right.coords) } #[inline] fn le(&self, right: &Self) -> bool { self.coords.le(&right.coords) } #[inline] fn gt(&self, right: &Self) -> bool { self.coords.gt(&right.coords) } #[inline] fn ge(&self, right: &Self) -> bool { self.coords.ge(&right.coords) } } /* * inf/sup */ impl Point { /// Computes the infimum (aka. componentwise min) of two points. #[inline] pub fn inf(&self, other: &Self) -> Point { self.coords.inf(&other.coords).into() } /// Computes the supremum (aka. componentwise max) of two points. #[inline] pub fn sup(&self, other: &Self) -> Point { self.coords.sup(&other.coords).into() } /// Computes the (infimum, supremum) of two points. #[inline] pub fn inf_sup(&self, other: &Self) -> (Point, Point) { let (inf, sup) = self.coords.inf_sup(&other.coords); (inf.into(), sup.into()) } } /* * * Display * */ impl fmt::Display for Point { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{{")?; let mut it = self.coords.iter(); write!(f, "{}", *it.next().unwrap())?; for comp in it { write!(f, ", {}", *comp)?; } write!(f, "}}") } }