//! Tests for proptest-related functionality. #![allow(dead_code)] use nalgebra::allocator::Allocator; use nalgebra::base::dimension::*; use nalgebra::proptest::{DimRange, MatrixStrategy}; use nalgebra::{ DMatrix, DVector, DefaultAllocator, Dim, DualQuaternion, Isometry2, Isometry3, Matrix3, OMatrix, Point2, Point3, Quaternion, Rotation2, Rotation3, Scalar, Similarity3, Translation2, Translation3, UnitComplex, UnitDualQuaternion, UnitQuaternion, Vector3, U3, U4, }; use num_complex::Complex; use proptest::prelude::*; use proptest::strategy::{Strategy, ValueTree}; use proptest::test_runner::TestRunner; use std::ops::RangeInclusive; pub const PROPTEST_MATRIX_DIM: RangeInclusive<usize> = 1..=20; pub const PROPTEST_F64: RangeInclusive<f64> = -100.0..=100.0; pub use nalgebra::proptest::{matrix, vector}; pub fn point2() -> impl Strategy<Value = Point2<f64>> { vector2().prop_map(|v| Point2::from(v)) } pub fn point3() -> impl Strategy<Value = Point3<f64>> { vector3().prop_map(|v| Point3::from(v)) } pub fn translation2() -> impl Strategy<Value = Translation2<f64>> { vector2().prop_map(|v| Translation2::from(v)) } pub fn translation3() -> impl Strategy<Value = Translation3<f64>> { vector3().prop_map(|v| Translation3::from(v)) } pub fn rotation2() -> impl Strategy<Value = Rotation2<f64>> { PROPTEST_F64.prop_map(|v| Rotation2::new(v)) } pub fn rotation3() -> impl Strategy<Value = Rotation3<f64>> { vector3().prop_map(|v| Rotation3::new(v)) } pub fn unit_complex() -> impl Strategy<Value = UnitComplex<f64>> { PROPTEST_F64.prop_map(|v| UnitComplex::new(v)) } pub fn isometry2() -> impl Strategy<Value = Isometry2<f64>> { vector3().prop_map(|v| Isometry2::new(v.xy(), v.z)) } pub fn isometry3() -> impl Strategy<Value = Isometry3<f64>> { vector6().prop_map(|v| Isometry3::new(v.xyz(), Vector3::new(v.w, v.a, v.b))) } // pub fn similarity2() -> impl Strategy<Value = Similarity2<f64>> { // vector4().prop_map(|v| Similarity2::new(v.xy(), v.z, v.w)) // } pub fn similarity3() -> impl Strategy<Value = Similarity3<f64>> { vector(PROPTEST_F64, Const::<7>) .prop_map(|v| Similarity3::new(v.xyz(), Vector3::new(v[3], v[4], v[5]), v[6])) } pub fn unit_dual_quaternion() -> impl Strategy<Value = UnitDualQuaternion<f64>> { isometry3().prop_map(|iso| UnitDualQuaternion::from_isometry(&iso)) } pub fn dual_quaternion() -> impl Strategy<Value = DualQuaternion<f64>> { vector(PROPTEST_F64, Const::<8>).prop_map(|v| { DualQuaternion::from_real_and_dual( Quaternion::new(v[0], v[1], v[2], v[3]), Quaternion::new(v[4], v[5], v[6], v[7]), ) }) } pub fn quaternion() -> impl Strategy<Value = Quaternion<f64>> { vector4().prop_map(|v| Quaternion::from(v)) } pub fn unit_quaternion() -> impl Strategy<Value = UnitQuaternion<f64>> { vector3().prop_map(|v| UnitQuaternion::new(v)) } pub fn complex_f64() -> impl Strategy<Value = Complex<f64>> + Clone { vector(PROPTEST_F64, Const::<2>).prop_map(|v| Complex::new(v.x, v.y)) } pub fn dmatrix() -> impl Strategy<Value = DMatrix<f64>> { matrix(PROPTEST_F64, PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM) } pub fn dvector() -> impl Strategy<Value = DVector<f64>> { vector(PROPTEST_F64, PROPTEST_MATRIX_DIM) } pub fn dmatrix_<ScalarStrategy>( scalar_strategy: ScalarStrategy, ) -> impl Strategy<Value = OMatrix<ScalarStrategy::Value, Dynamic, Dynamic>> where ScalarStrategy: Strategy + Clone + 'static, ScalarStrategy::Value: Scalar, DefaultAllocator: Allocator<ScalarStrategy::Value, Dynamic, Dynamic>, { matrix(scalar_strategy, PROPTEST_MATRIX_DIM, PROPTEST_MATRIX_DIM) } // pub fn dvector_<T>(range: RangeInclusive<T>) -> impl Strategy<Value = DVector<T>> // where // RangeInclusive<T>: Strategy<Value = T>, // T: Scalar + PartialEq + Copy, // DefaultAllocator: Allocator<T, Dynamic>, // { // vector(range, PROPTEST_MATRIX_DIM) // } macro_rules! define_strategies( ($($strategy_: ident $strategy: ident<$nrows: literal, $ncols: literal>),*) => {$( pub fn $strategy() -> impl Strategy<Value = OMatrix<f64, Const<$nrows>, Const<$ncols>>> { matrix(PROPTEST_F64, Const::<$nrows>, Const::<$ncols>) } pub fn $strategy_<ScalarStrategy>(scalar_strategy: ScalarStrategy) -> impl Strategy<Value = OMatrix<ScalarStrategy::Value, Const<$nrows>, Const<$ncols>>> where ScalarStrategy: Strategy + Clone + 'static, ScalarStrategy::Value: Scalar, { matrix(scalar_strategy, Const::<$nrows>, Const::<$ncols>) } )*} ); define_strategies!( matrix1_ matrix1<1, 1>, matrix2_ matrix2<2, 2>, matrix3_ matrix3<3, 3>, matrix4_ matrix4<4, 4>, matrix5_ matrix5<5, 5>, matrix6_ matrix6<6, 6>, matrix5x2_ matrix5x2<5, 2>, matrix2x5_ matrix2x5<2, 5>, matrix5x3_ matrix5x3<5, 3>, matrix3x5_ matrix3x5<3, 5>, matrix5x4_ matrix5x4<5, 4>, matrix4x5_ matrix4x5<4, 5>, vector1_ vector1<1, 1>, vector2_ vector2<2, 1>, vector3_ vector3<3, 1>, vector4_ vector4<4, 1>, vector5_ vector5<5, 1>, vector6_ vector6<6, 1> ); /// Generate a proptest that tests that all matrices generated with the /// provided rows and columns conform to the constraints defined by the /// input. macro_rules! generate_matrix_sanity_test { ($test_name:ident, $rows:expr, $cols:expr) => { proptest! { #[test] fn $test_name(a in matrix(-5 ..= 5i32, $rows, $cols)) { // let a: OMatrix<_, $rows, $cols> = a; let rows_range = DimRange::from($rows); let cols_range = DimRange::from($cols); prop_assert!(a.nrows() >= rows_range.lower_bound().value() && a.nrows() <= rows_range.upper_bound().value()); prop_assert!(a.ncols() >= cols_range.lower_bound().value() && a.ncols() <= cols_range.upper_bound().value()); prop_assert!(a.iter().all(|x_ij| *x_ij >= -5 && *x_ij <= 5)); } } }; } // Test all fixed-size matrices with row/col dimensions up to 3 generate_matrix_sanity_test!(test_matrix_u0_u0, Const::<0>, Const::<0>); generate_matrix_sanity_test!(test_matrix_u1_u0, Const::<1>, Const::<0>); generate_matrix_sanity_test!(test_matrix_u0_u1, Const::<0>, Const::<1>); generate_matrix_sanity_test!(test_matrix_u1_u1, Const::<1>, Const::<1>); generate_matrix_sanity_test!(test_matrix_u2_u1, Const::<2>, Const::<1>); generate_matrix_sanity_test!(test_matrix_u1_u2, Const::<1>, Const::<2>); generate_matrix_sanity_test!(test_matrix_u2_u2, Const::<2>, Const::<2>); generate_matrix_sanity_test!(test_matrix_u3_u2, Const::<3>, Const::<2>); generate_matrix_sanity_test!(test_matrix_u2_u3, Const::<2>, Const::<3>); generate_matrix_sanity_test!(test_matrix_u3_u3, Const::<3>, Const::<3>); // Similarly test all heap-allocated but fixed dim ranges generate_matrix_sanity_test!(test_matrix_0_0, 0, 0); generate_matrix_sanity_test!(test_matrix_0_1, 0, 1); generate_matrix_sanity_test!(test_matrix_1_0, 1, 0); generate_matrix_sanity_test!(test_matrix_1_1, 1, 1); generate_matrix_sanity_test!(test_matrix_2_1, 2, 1); generate_matrix_sanity_test!(test_matrix_1_2, 1, 2); generate_matrix_sanity_test!(test_matrix_2_2, 2, 2); generate_matrix_sanity_test!(test_matrix_3_2, 3, 2); generate_matrix_sanity_test!(test_matrix_2_3, 2, 3); generate_matrix_sanity_test!(test_matrix_3_3, 3, 3); // Test arbitrary inputs generate_matrix_sanity_test!(test_matrix_input_1, Const::<5>, 1..=5); generate_matrix_sanity_test!(test_matrix_input_2, 3..=4, 1..=5); generate_matrix_sanity_test!(test_matrix_input_3, 1..=2, Const::<3>); generate_matrix_sanity_test!(test_matrix_input_4, 3, Const::<4>); #[test] fn test_matrix_output_types() { // Test that the dimension types are correct for the given inputs let _: MatrixStrategy<_, U3, U4> = matrix(-5..5, Const::<3>, Const::<4>); let _: MatrixStrategy<_, U3, U3> = matrix(-5..5, Const::<3>, Const::<3>); let _: MatrixStrategy<_, U3, Dynamic> = matrix(-5..5, Const::<3>, 1..=5); let _: MatrixStrategy<_, Dynamic, U3> = matrix(-5..5, 1..=5, Const::<3>); let _: MatrixStrategy<_, Dynamic, Dynamic> = matrix(-5..5, 1..=5, 1..=5); } // Below we have some tests to ensure that specific instances of OMatrix are usable // in a typical proptest scenario where we (implicitly) use the `Arbitrary` trait proptest! { #[test] fn ensure_arbitrary_test_compiles_matrix3(_: Matrix3<i32>) {} #[test] fn ensure_arbitrary_test_compiles_matrixmn_u3_dynamic(_: OMatrix<i32, U3, Dynamic>) {} #[test] fn ensure_arbitrary_test_compiles_matrixmn_dynamic_u3(_: OMatrix<i32, Dynamic, U3>) {} #[test] fn ensure_arbitrary_test_compiles_dmatrix(_: DMatrix<i32>) {} #[test] fn ensure_arbitrary_test_compiles_vector3(_: Vector3<i32>) {} #[test] fn ensure_arbitrary_test_compiles_dvector(_: DVector<i32>) {} } #[test] fn matrix_shrinking_satisfies_constraints() { // We use a deterministic test runner to make the test "stable". let mut runner = TestRunner::deterministic(); let strategy = matrix(-1..=2, 1..=3, 2..=4); let num_matrices = 25; macro_rules! maybeprintln { ($($arg:tt)*) => { // Uncomment the below line to enable printing of matrix sequences. This is handy // for manually inspecting the sequences of simplified matrices. // println!($($arg)*) }; } maybeprintln!("========================== (begin generation process)"); for _ in 0..num_matrices { let mut tree = strategy .new_tree(&mut runner) .expect("Tree generation should not fail."); let mut current = Some(tree.current()); maybeprintln!("------------------"); while let Some(matrix) = current { maybeprintln!("{}", matrix); assert!( matrix.iter().all(|&v| v >= -1 && v <= 2), "All matrix elements must satisfy constraints" ); assert!( matrix.nrows() >= 1 && matrix.nrows() <= 3, "Number of rows in matrix must satisfy constraints." ); assert!( matrix.ncols() >= 2 && matrix.ncols() <= 4, "Number of columns in matrix must satisfy constraints." ); current = if tree.simplify() { Some(tree.current()) } else { None } } } maybeprintln!("========================== (end of generation process)"); } #[cfg(feature = "slow-tests")] mod slow { use super::*; use itertools::Itertools; use std::collections::HashSet; use std::iter::repeat; #[cfg(feature = "slow-tests")] #[test] fn matrix_samples_all_possible_outputs() { // Test that the proptest generation covers all possible outputs for a small space of inputs // given enough samples. // We use a deterministic test runner to make the test "stable". let mut runner = TestRunner::deterministic(); // This number needs to be high enough so that we with high probability sample // all possible cases let num_generated_matrices = 200000; let values = -1..=1; let rows = 0..=2; let cols = 0..=3; let strategy = matrix(values.clone(), rows.clone(), cols.clone()); // Enumerate all possible combinations let mut all_combinations = HashSet::new(); for nrows in rows { for ncols in cols.clone() { // For the given number of rows and columns let n_values = nrows * ncols; if n_values == 0 { // If we have zero rows or columns, the set of matrices with the given // rows and columns is a single element: an empty matrix all_combinations.insert(DMatrix::from_row_slice(nrows, ncols, &[])); } else { // Otherwise, we need to sample all possible matrices. // To do this, we generate the values as the (multi) Cartesian product // of the value sets. For example, for a 2x2 matrices, we consider // all possible 4-element arrays that the matrices can take by // considering all elements in the cartesian product // V x V x V x V // where V is the set of eligible values, e.g. V := -1 ..= 1 for matrix_values in repeat(values.clone()) .take(n_values) .multi_cartesian_product() { all_combinations.insert(DMatrix::from_row_slice( nrows, ncols, &matrix_values, )); } } } } let mut visited_combinations = HashSet::new(); for _ in 0..num_generated_matrices { let tree = strategy .new_tree(&mut runner) .expect("Tree generation should not fail"); let matrix = tree.current(); visited_combinations.insert(matrix.clone()); } assert_eq!( visited_combinations, all_combinations, "Did not sample all possible values." ); } }