#![cfg(feature = "arbitrary")] macro_rules! gen_tests( ($module: ident, $scalar: ty) => { mod $module { use na::{DMatrix, Matrix2, Matrix3x5, Matrix4, Matrix5x3}; #[allow(unused_imports)] use core::helper::{RandScalar, RandComplex}; quickcheck! { fn bidiagonal(m: DMatrix<$scalar>) -> bool { let m = m.map(|e| e.0); if m.len() == 0 { return true; } let bidiagonal = m.clone().bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } fn bidiagonal_static_5_3(m: Matrix5x3<$scalar>) -> bool { let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } fn bidiagonal_static_3_5(m: Matrix3x5<$scalar>) -> bool { let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } fn bidiagonal_static_square(m: Matrix4<$scalar>) -> bool { let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } fn bidiagonal_static_square_2x2(m: Matrix2<$scalar>) -> bool { let m = m.map(|e| e.0); let bidiagonal = m.bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); relative_eq!(m, &u * d * &v_t, epsilon = 1.0e-7) } } } } ); gen_tests!(complex, RandComplex); gen_tests!(f64, RandScalar); #[test] fn bidiagonal_identity() { let m = na::DMatrix::::identity(10, 10); let bidiagonal = m.clone().bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); assert_eq!(m, &u * d * &v_t); let m = na::DMatrix::::identity(10, 15); let bidiagonal = m.clone().bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); assert_eq!(m, &u * d * &v_t); let m = na::DMatrix::::identity(15, 10); let bidiagonal = m.clone().bidiagonalize(); let (u, d, v_t) = bidiagonal.unpack(); assert_eq!(m, &u * d * &v_t); }