use na::{Real, Rotation3, Unit, UnitComplex}; use aliases::{TMat4, TVec2, TVec3, TVec4}; /// Build the rotation matrix needed to align `normal` and `up`. pub fn orientation(normal: &TVec3, up: &TVec3) -> TMat4 { if let Some(r) = Rotation3::rotation_between(normal, up) { r.to_homogeneous() } else { TMat4::identity() } } /// Rotate a two dimensional vector. pub fn rotate_vec2(v: &TVec2, angle: N) -> TVec2 { UnitComplex::new(angle) * v } /// Rotate a three dimensional vector around an axis. pub fn rotate_vec3(v: &TVec3, angle: N, normal: &TVec3) -> TVec3 { Rotation3::from_axis_angle(&Unit::new_normalize(*normal), angle) * v } /// Rotate a thee dimensional vector in homogeneous coordinates around an axis. pub fn rotate_vec4(v: &TVec4, angle: N, normal: &TVec3) -> TVec4 { Rotation3::from_axis_angle(&Unit::new_normalize(*normal), angle).to_homogeneous() * v } /// Rotate a three dimensional vector around the `X` axis. pub fn rotate_x_vec3(v: &TVec3, angle: N) -> TVec3 { Rotation3::from_axis_angle(&TVec3::x_axis(), angle) * v } /// Rotate a three dimensional vector in homogeneous coordinates around the `X` axis. pub fn rotate_x_vec4(v: &TVec4, angle: N) -> TVec4 { Rotation3::from_axis_angle(&TVec3::x_axis(), angle).to_homogeneous() * v } /// Rotate a three dimensional vector around the `Y` axis. pub fn rotate_y_vec3(v: &TVec3, angle: N) -> TVec3 { Rotation3::from_axis_angle(&TVec3::y_axis(), angle) * v } /// Rotate a three dimensional vector in homogeneous coordinates around the `Y` axis. pub fn rotate_y_vec4(v: &TVec4, angle: N) -> TVec4 { Rotation3::from_axis_angle(&TVec3::y_axis(), angle).to_homogeneous() * v } /// Rotate a three dimensional vector around the `Z` axis. pub fn rotate_z_vec3(v: &TVec3, angle: N) -> TVec3 { Rotation3::from_axis_angle(&TVec3::z_axis(), angle) * v } /// Rotate a three dimensional vector in homogeneous coordinates around the `Z` axis. pub fn rotate_z_vec4(v: &TVec4, angle: N) -> TVec4 { Rotation3::from_axis_angle(&TVec3::z_axis(), angle).to_homogeneous() * v } /// Computes a spherical linear interpolation between the vectors `x` and `y` assumed to be normalized. pub fn slerp(x: &TVec3, y: &TVec3, a: N) -> TVec3 { Unit::new_unchecked(*x) .slerp(&Unit::new_unchecked(*y), a) .into_inner() }