#[cfg(feature = "serde-serialize")] use serde::{Serialize, Deserialize}; use alga::general::Real; use num_complex::Complex; use std::cmp; use allocator::Allocator; use base::dimension::{Dim, DimDiff, DimSub, Dynamic, U1, U2, U3}; use base::storage::Storage; use base::{DefaultAllocator, MatrixN, SquareMatrix, Unit, Vector2, Vector3, VectorN}; use constraint::{DimEq, ShapeConstraint}; use geometry::{Reflection, UnitComplex}; use linalg::householder; use linalg::Hessenberg; /// Real Schur decomposition of a square matrix. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", serde( bound( serialize = "DefaultAllocator: Allocator, MatrixN: Serialize" ) ) )] #[cfg_attr( feature = "serde-serialize", serde( bound( deserialize = "DefaultAllocator: Allocator, MatrixN: Deserialize<'de>" ) ) )] #[derive(Clone, Debug)] pub struct RealSchur where DefaultAllocator: Allocator, { q: MatrixN, t: MatrixN, } impl Copy for RealSchur where DefaultAllocator: Allocator, MatrixN: Copy, { } impl RealSchur where D: DimSub, // For Hessenberg. ShapeConstraint: DimEq>, // For Hessenberg. DefaultAllocator: Allocator> + Allocator> + Allocator + Allocator, { /// Computes the Schur decomposition of a square matrix. pub fn new(m: MatrixN) -> RealSchur { Self::try_new(m, N::default_epsilon(), 0).unwrap() } /// Attempts to compute the Schur decomposition of a square matrix. /// /// If only eigenvalues are needed, it is more efficient to call the matrix method /// `.eigenvalues()` instead. /// /// # Arguments /// /// * `eps` − tolerence used to determine when a value converged to 0. /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// continues indefinitely until convergence. pub fn try_new(m: MatrixN, eps: N, max_niter: usize) -> Option> { let mut work = unsafe { VectorN::new_uninitialized_generic(m.data.shape().0, U1) }; Self::do_decompose(m, &mut work, eps, max_niter, true).map(|(q, t)| RealSchur { q: q.unwrap(), t: t, }) } fn do_decompose( mut m: MatrixN, work: &mut VectorN, eps: N, max_niter: usize, compute_q: bool, ) -> Option<(Option>, MatrixN)> { assert!( m.is_square(), "Unable to compute the eigenvectors and eigenvalues of a non-square matrix." ); let dim = m.data.shape().0; if dim.value() == 0 { let vecs = Some(MatrixN::from_element_generic(dim, dim, N::zero())); let vals = MatrixN::from_element_generic(dim, dim, N::zero()); return Some((vecs, vals)); } else if dim.value() == 1 { if compute_q { let q = MatrixN::from_element_generic(dim, dim, N::one()); return Some((Some(q), m)); } else { return Some((None, m)); } } // Specialization would make this easier. else if dim.value() == 2 { return decompose_2x2(m, compute_q); } let amax_m = m.amax(); m /= amax_m; let hess = Hessenberg::new_with_workspace(m, work); let mut q; let mut t; if compute_q { // FIXME: could we work without unpacking? Using only the internal representation of // hessenberg decomposition. let (vecs, vals) = hess.unpack(); q = Some(vecs); t = vals; } else { q = None; t = hess.unpack_h() } // Implicit double-shift QR method. let mut niter = 0; let (mut start, mut end) = Self::delimit_subproblem(&mut t, eps, dim.value() - 1); while end != start { let subdim = end - start + 1; if subdim > 2 { let m = end - 1; let n = end; let h11 = t[(start + 0, start + 0)]; let h12 = t[(start + 0, start + 1)]; let h21 = t[(start + 1, start + 0)]; let h22 = t[(start + 1, start + 1)]; let h32 = t[(start + 2, start + 1)]; let hnn = t[(n, n)]; let hmm = t[(m, m)]; let hnm = t[(n, m)]; let hmn = t[(m, n)]; let tra = hnn + hmm; let det = hnn * hmm - hnm * hmn; let mut axis = Vector3::new( h11 * h11 + h12 * h21 - tra * h11 + det, h21 * (h11 + h22 - tra), h21 * h32, ); for k in start..n - 1 { let (norm, not_zero) = householder::reflection_axis_mut(&mut axis); if not_zero { if k > start { t[(k + 0, k - 1)] = norm; t[(k + 1, k - 1)] = N::zero(); t[(k + 2, k - 1)] = N::zero(); } let refl = Reflection::new(Unit::new_unchecked(axis), N::zero()); { let krows = cmp::min(k + 4, end + 1); let mut work = work.rows_mut(0, krows); refl.reflect(&mut t.generic_slice_mut( (k, k), (U3, Dynamic::new(dim.value() - k)), )); refl.reflect_rows( &mut t.generic_slice_mut((0, k), (Dynamic::new(krows), U3)), &mut work, ); } if let Some(ref mut q) = q { refl.reflect_rows(&mut q.generic_slice_mut((0, k), (dim, U3)), work); } } axis.x = t[(k + 1, k)]; axis.y = t[(k + 2, k)]; if k < n - 2 { axis.z = t[(k + 3, k)]; } } let mut axis = Vector2::new(axis.x, axis.y); let (norm, not_zero) = householder::reflection_axis_mut(&mut axis); if not_zero { let refl = Reflection::new(Unit::new_unchecked(axis), N::zero()); t[(m, m - 1)] = norm; t[(n, m - 1)] = N::zero(); { let mut work = work.rows_mut(0, end + 1); refl.reflect(&mut t.generic_slice_mut( (m, m), (U2, Dynamic::new(dim.value() - m)), )); refl.reflect_rows( &mut t.generic_slice_mut((0, m), (Dynamic::new(end + 1), U2)), &mut work, ); } if let Some(ref mut q) = q { refl.reflect_rows(&mut q.generic_slice_mut((0, m), (dim, U2)), work); } } } else { // Decouple the 2x2 block if it has real eigenvalues. if let Some(rot) = compute_2x2_basis(&t.fixed_slice::(start, start)) { let inv_rot = rot.inverse(); inv_rot.rotate(&mut t.generic_slice_mut( (start, start), (U2, Dynamic::new(dim.value() - start)), )); rot.rotate_rows(&mut t.generic_slice_mut( (0, start), (Dynamic::new(end + 1), U2), )); t[(end, start)] = N::zero(); if let Some(ref mut q) = q { rot.rotate_rows(&mut q.generic_slice_mut((0, start), (dim, U2))); } } // Check if we reached the beginning of the matrix. if end > 2 { end -= 2; } else { break; } } let sub = Self::delimit_subproblem(&mut t, eps, end); start = sub.0; end = sub.1; niter += 1; if niter == max_niter { return None; } } t *= amax_m; Some((q, t)) } /// Computes the eigenvalues of the decomposed matrix. fn do_eigenvalues(t: &MatrixN, out: &mut VectorN) -> bool { let dim = t.nrows(); let mut m = 0; while m < dim - 1 { let n = m + 1; if t[(n, m)].is_zero() { out[m] = t[(m, m)]; m += 1; } else { // Complex eigenvalue. return false; } } if m == dim - 1 { out[m] = t[(m, m)]; } true } /// Computes the complex eigenvalues of the decomposed matrix. fn do_complex_eigenvalues(t: &MatrixN, out: &mut VectorN, D>) where DefaultAllocator: Allocator, D>, { let dim = t.nrows(); let mut m = 0; while m < dim - 1 { let n = m + 1; if t[(n, m)].is_zero() { out[m] = Complex::new(t[(m, m)], N::zero()); m += 1; } else { // Solve the 2x2 eigenvalue subproblem. let hmm = t[(m, m)]; let hnm = t[(n, m)]; let hmn = t[(m, n)]; let hnn = t[(n, n)]; let tra = hnn + hmm; let det = hnn * hmm - hnm * hmn; let discr = tra * tra * ::convert(0.25) - det; // All 2x2 blocks have negative discriminant because we already decoupled those // with positive eigenvalues.. let sqrt_discr = Complex::new(N::zero(), (-discr).sqrt()); out[m] = Complex::new(tra * ::convert(0.5), N::zero()) + sqrt_discr; out[m + 1] = Complex::new(tra * ::convert(0.5), N::zero()) - sqrt_discr; m += 2; } } if m == dim - 1 { out[m] = Complex::new(t[(m, m)], N::zero()); } } fn delimit_subproblem(t: &mut MatrixN, eps: N, end: usize) -> (usize, usize) where D: DimSub, DefaultAllocator: Allocator>, { let mut n = end; while n > 0 { let m = n - 1; if t[(n, m)].abs() <= eps * (t[(n, n)].abs() + t[(m, m)].abs()) { t[(n, m)] = N::zero(); } else { break; } n -= 1; } if n == 0 { return (0, 0); } let mut new_start = n - 1; while new_start > 0 { let m = new_start - 1; let off_diag = t[(new_start, m)]; if off_diag.is_zero() || off_diag.abs() <= eps * (t[(new_start, new_start)].abs() + t[(m, m)].abs()) { t[(new_start, m)] = N::zero(); break; } new_start -= 1; } (new_start, n) } /// Retrieves the unitary matrix `Q` and the upper-quasitriangular matrix `T` such that the /// decomposed matrix equals `Q * T * Q.transpose()`. pub fn unpack(self) -> (MatrixN, MatrixN) { (self.q, self.t) } /// Computes the real eigenvalues of the decomposed matrix. /// /// Return `None` if some eigenvalues are complex. pub fn eigenvalues(&self) -> Option> { let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) }; if Self::do_eigenvalues(&self.t, &mut out) { Some(out) } else { None } } /// Computes the complex eigenvalues of the decomposed matrix. pub fn complex_eigenvalues(&self) -> VectorN, D> where DefaultAllocator: Allocator, D>, { let mut out = unsafe { VectorN::new_uninitialized_generic(self.t.data.shape().0, U1) }; Self::do_complex_eigenvalues(&self.t, &mut out); out } } fn decompose_2x2( mut m: MatrixN, compute_q: bool, ) -> Option<(Option>, MatrixN)> where DefaultAllocator: Allocator, { let dim = m.data.shape().0; let mut q = None; match compute_2x2_basis(&m.fixed_slice::(0, 0)) { Some(rot) => { let mut m = m.fixed_slice_mut::(0, 0); let inv_rot = rot.inverse(); inv_rot.rotate(&mut m); rot.rotate_rows(&mut m); if compute_q { let c = rot.unwrap(); // XXX: we have to build the matrix manually because // rot.to_rotation_matrix().unwrap() causes an ICE. q = Some(MatrixN::from_column_slice_generic( dim, dim, &[c.re, c.im, -c.im, c.re], )); } } None => if compute_q { q = Some(MatrixN::identity_generic(dim, dim)); }, }; Some((q, m)) } fn compute_2x2_eigvals>( m: &SquareMatrix, ) -> Option<(N, N)> { // Solve the 2x2 eigenvalue subproblem. let h00 = m[(0, 0)]; let h10 = m[(1, 0)]; let h01 = m[(0, 1)]; let h11 = m[(1, 1)]; // NOTE: this discriminant computation is mor stable than the // one based on the trace and determinant: 0.25 * tra * tra - det // because et ensures positiveness for symmetric matrices. let val = (h00 - h11) * ::convert(0.5); let discr = h10 * h01 + val * val; if discr >= N::zero() { let sqrt_discr = discr.sqrt(); let half_tra = (h00 + h11) * ::convert(0.5); Some((half_tra + sqrt_discr, half_tra - sqrt_discr)) } else { None } } // Computes the 2x2 transformation that upper-triangulates a 2x2 matrix with real eigenvalues. /// Computes the singular vectors for a 2x2 matrix. /// /// Returns `None` if the matrix has complex eigenvalues, or is upper-triangular. In both case, /// the basis is the identity. fn compute_2x2_basis>( m: &SquareMatrix, ) -> Option> { let h10 = m[(1, 0)]; if h10.is_zero() { return None; } if let Some((eigval1, eigval2)) = compute_2x2_eigvals(m) { let x1 = m[(1, 1)] - eigval1; let x2 = m[(1, 1)] - eigval2; // NOTE: Choose the one that yields a larger x component. // This is necessary for numerical stability of the normalization of the complex // number. let basis = if x1.abs() > x2.abs() { Complex::new(x1, -h10) } else { Complex::new(x2, -h10) }; Some(UnitComplex::from_complex(basis)) } else { None } } impl> SquareMatrix where D: DimSub, // For Hessenberg. ShapeConstraint: DimEq>, // For Hessenberg. DefaultAllocator: Allocator> + Allocator> + Allocator + Allocator, { /// Computes the Schur decomposition of a square matrix. pub fn real_schur(self) -> RealSchur { RealSchur::new(self.into_owned()) } /// Attempts to compute the Schur decomposition of a square matrix. /// /// If only eigenvalues are needed, it is more efficient to call the matrix method /// `.eigenvalues()` instead. /// /// # Arguments /// /// * `eps` − tolerence used to determine when a value converged to 0. /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm /// continues indefinitely until convergence. pub fn try_real_schur(self, eps: N, max_niter: usize) -> Option> { RealSchur::try_new(self.into_owned(), eps, max_niter) } /// Computes the eigenvalues of this matrix. pub fn eigenvalues(&self) -> Option> { assert!( self.is_square(), "Unable to compute eigenvalues of a non-square matrix." ); let mut work = unsafe { VectorN::new_uninitialized_generic(self.data.shape().0, U1) }; // Special case for 2x2 natrices. if self.nrows() == 2 { // FIXME: can we avoid this slicing // (which is needed here just to transform D to U2)? let me = self.fixed_slice::(0, 0); return match compute_2x2_eigvals(&me) { Some((a, b)) => { work[0] = a; work[1] = b; Some(work) } None => None, }; } // FIXME: add balancing? let schur = RealSchur::do_decompose( self.clone_owned(), &mut work, N::default_epsilon(), 0, false, ).unwrap(); if RealSchur::do_eigenvalues(&schur.1, &mut work) { Some(work) } else { None } } /// Computes the eigenvalues of this matrix. pub fn complex_eigenvalues(&self) -> VectorN, D> // FIXME: add balancing? where DefaultAllocator: Allocator, D>, { let dim = self.data.shape().0; let mut work = unsafe { VectorN::new_uninitialized_generic(dim, U1) }; let schur = RealSchur::do_decompose( self.clone_owned(), &mut work, N::default_epsilon(), 0, false, ).unwrap(); let mut eig = unsafe { VectorN::new_uninitialized_generic(dim, U1) }; RealSchur::do_complex_eigenvalues(&schur.1, &mut eig); eig } }