#[cfg(feature = "serde-serialize")] use serde::{Serialize, Deserialize}; use num::Zero; use num_complex::Complex; use alga::general::Real; use na::allocator::Allocator; use na::dimension::{Dim, U1}; use na::storage::Storage; use na::{DefaultAllocator, Matrix, MatrixN, Scalar, VectorN}; use ComplexHelper; use lapack; /// Eigendecomposition of a real square matrix with real eigenvalues. #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", serde( bound( serialize = "DefaultAllocator: Allocator + Allocator, VectorN: Serialize, MatrixN: Serialize" ) ) )] #[cfg_attr( feature = "serde-serialize", serde( bound( deserialize = "DefaultAllocator: Allocator + Allocator, VectorN: Serialize, MatrixN: Deserialize<'de>" ) ) )] #[derive(Clone, Debug)] pub struct Eigen where DefaultAllocator: Allocator + Allocator, { /// The eigenvalues of the decomposed matrix. pub eigenvalues: VectorN, /// The (right) eigenvectors of the decomposed matrix. pub eigenvectors: Option>, /// The left eigenvectors of the decomposed matrix. pub left_eigenvectors: Option>, } impl Copy for Eigen where DefaultAllocator: Allocator + Allocator, VectorN: Copy, MatrixN: Copy, { } impl Eigen where DefaultAllocator: Allocator + Allocator, { /// Computes the eigenvalues and eigenvectors of the square matrix `m`. /// /// If `eigenvectors` is `false` then, the eigenvectors are not computed explicitly. pub fn new( mut m: MatrixN, left_eigenvectors: bool, eigenvectors: bool, ) -> Option> { assert!( m.is_square(), "Unable to compute the eigenvalue decomposition of a non-square matrix." ); let ljob = if left_eigenvectors { b'V' } else { b'N' }; let rjob = if eigenvectors { b'V' } else { b'N' }; let (nrows, ncols) = m.data.shape(); let n = nrows.value(); let lda = n as i32; let mut wr = unsafe { Matrix::new_uninitialized_generic(nrows, U1) }; // FIXME: Tap into the workspace. let mut wi = unsafe { Matrix::new_uninitialized_generic(nrows, U1) }; let mut info = 0; let mut placeholder1 = [N::zero()]; let mut placeholder2 = [N::zero()]; let lwork = N::xgeev_work_size( ljob, rjob, n as i32, m.as_mut_slice(), lda, wr.as_mut_slice(), wi.as_mut_slice(), &mut placeholder1, n as i32, &mut placeholder2, n as i32, &mut info, ); lapack_check!(info); let mut work = unsafe { ::uninitialized_vec(lwork as usize) }; match (left_eigenvectors, eigenvectors) { (true, true) => { let mut vl = unsafe { Matrix::new_uninitialized_generic(nrows, ncols) }; let mut vr = unsafe { Matrix::new_uninitialized_generic(nrows, ncols) }; N::xgeev( ljob, rjob, n as i32, m.as_mut_slice(), lda, wr.as_mut_slice(), wi.as_mut_slice(), &mut vl.as_mut_slice(), n as i32, &mut vr.as_mut_slice(), n as i32, &mut work, lwork, &mut info, ); lapack_check!(info); if wi.iter().all(|e| e.is_zero()) { return Some(Eigen { eigenvalues: wr, left_eigenvectors: Some(vl), eigenvectors: Some(vr), }); } } (true, false) => { let mut vl = unsafe { Matrix::new_uninitialized_generic(nrows, ncols) }; N::xgeev( ljob, rjob, n as i32, m.as_mut_slice(), lda, wr.as_mut_slice(), wi.as_mut_slice(), &mut vl.as_mut_slice(), n as i32, &mut placeholder2, 1 as i32, &mut work, lwork, &mut info, ); lapack_check!(info); if wi.iter().all(|e| e.is_zero()) { return Some(Eigen { eigenvalues: wr, left_eigenvectors: Some(vl), eigenvectors: None, }); } } (false, true) => { let mut vr = unsafe { Matrix::new_uninitialized_generic(nrows, ncols) }; N::xgeev( ljob, rjob, n as i32, m.as_mut_slice(), lda, wr.as_mut_slice(), wi.as_mut_slice(), &mut placeholder1, 1 as i32, &mut vr.as_mut_slice(), n as i32, &mut work, lwork, &mut info, ); lapack_check!(info); if wi.iter().all(|e| e.is_zero()) { return Some(Eigen { eigenvalues: wr, left_eigenvectors: None, eigenvectors: Some(vr), }); } } (false, false) => { N::xgeev( ljob, rjob, n as i32, m.as_mut_slice(), lda, wr.as_mut_slice(), wi.as_mut_slice(), &mut placeholder1, 1 as i32, &mut placeholder2, 1 as i32, &mut work, lwork, &mut info, ); lapack_check!(info); if wi.iter().all(|e| e.is_zero()) { return Some(Eigen { eigenvalues: wr, left_eigenvectors: None, eigenvectors: None, }); } } } None } /// The complex eigenvalues of the given matrix. /// /// Panics if the eigenvalue computation does not converge. pub fn complex_eigenvalues(mut m: MatrixN) -> VectorN, D> where DefaultAllocator: Allocator, D>, { assert!( m.is_square(), "Unable to compute the eigenvalue decomposition of a non-square matrix." ); let nrows = m.data.shape().0; let n = nrows.value(); let lda = n as i32; let mut wr = unsafe { Matrix::new_uninitialized_generic(nrows, U1) }; let mut wi = unsafe { Matrix::new_uninitialized_generic(nrows, U1) }; let mut info = 0; let mut placeholder1 = [N::zero()]; let mut placeholder2 = [N::zero()]; let lwork = N::xgeev_work_size( b'N', b'N', n as i32, m.as_mut_slice(), lda, wr.as_mut_slice(), wi.as_mut_slice(), &mut placeholder1, n as i32, &mut placeholder2, n as i32, &mut info, ); lapack_panic!(info); let mut work = unsafe { ::uninitialized_vec(lwork as usize) }; N::xgeev( b'N', b'N', n as i32, m.as_mut_slice(), lda, wr.as_mut_slice(), wi.as_mut_slice(), &mut placeholder1, 1 as i32, &mut placeholder2, 1 as i32, &mut work, lwork, &mut info, ); lapack_panic!(info); let mut res = unsafe { Matrix::new_uninitialized_generic(nrows, U1) }; for i in 0..res.len() { res[i] = Complex::new(wr[i], wi[i]); } res } /// The determinant of the decomposed matrix. #[inline] pub fn determinant(&self) -> N { let mut det = N::one(); for e in self.eigenvalues.iter() { det *= *e; } det } } /* * * Lapack functions dispatch. * */ /// Trait implemented by scalar type for which Lapack funtion exist to compute the /// eigendecomposition. pub trait EigenScalar: Scalar { #[allow(missing_docs)] fn xgeev( jobvl: u8, jobvr: u8, n: i32, a: &mut [Self], lda: i32, wr: &mut [Self], wi: &mut [Self], vl: &mut [Self], ldvl: i32, vr: &mut [Self], ldvr: i32, work: &mut [Self], lwork: i32, info: &mut i32, ); #[allow(missing_docs)] fn xgeev_work_size( jobvl: u8, jobvr: u8, n: i32, a: &mut [Self], lda: i32, wr: &mut [Self], wi: &mut [Self], vl: &mut [Self], ldvl: i32, vr: &mut [Self], ldvr: i32, info: &mut i32, ) -> i32; } macro_rules! real_eigensystem_scalar_impl ( ($N: ty, $xgeev: path) => ( impl EigenScalar for $N { #[inline] fn xgeev(jobvl: u8, jobvr: u8, n: i32, a: &mut [Self], lda: i32, wr: &mut [Self], wi: &mut [Self], vl: &mut [Self], ldvl: i32, vr: &mut [Self], ldvr: i32, work: &mut [Self], lwork: i32, info: &mut i32) { unsafe { $xgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info) } } #[inline] fn xgeev_work_size(jobvl: u8, jobvr: u8, n: i32, a: &mut [Self], lda: i32, wr: &mut [Self], wi: &mut [Self], vl: &mut [Self], ldvl: i32, vr: &mut [Self], ldvr: i32, info: &mut i32) -> i32 { let mut work = [ Zero::zero() ]; let lwork = -1 as i32; unsafe { $xgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, &mut work, lwork, info) }; ComplexHelper::real_part(work[0]) as i32 } } ) ); real_eigensystem_scalar_impl!(f32, lapack::sgeev); real_eigensystem_scalar_impl!(f64, lapack::dgeev); //// FIXME: decomposition of complex matrix and matrices with complex eigenvalues. // eigensystem_complex_impl!(f32, lapack::cgeev); // eigensystem_complex_impl!(f64, lapack::zgeev);