use storage::Storage; use {zero, DVector, Dim, Dynamic, Matrix, Real, VecStorage, Vector, U1}; use std::cmp; /// /// The output is the full discrete linear convolution of the inputs /// pub fn convolve_full, Q: Storage>( vector: Vector, kernel: Vector, ) -> Matrix> { let vec = vector.len(); let ker = kernel.len(); if vec == 0 || ker == 0 { panic!("Convolve's inputs must not be 0-sized. "); } if ker > vec { return convolve_full(kernel, vector); } let newlen = vec + ker - 1; let mut conv = DVector::::zeros(newlen); for i in 0..newlen { let u_i = if i > ker { i - ker } else { 0 }; let u_f = cmp::min(i, vec - 1); if u_i == u_f { conv[i] += vector[u_i] * kernel[(i - u_i)]; } else { for u in u_i..(u_f + 1) { if i - u < ker { conv[i] += vector[u] * kernel[(i - u)]; } } } } conv } /// /// The output convolution consists only of those elements that do not rely on the zero-padding. /// pub fn convolve_valid, Q: Storage>( vector: Vector, kernel: Vector, ) -> Matrix> { let vec = vector.len(); let ker = kernel.len(); if vec == 0 || ker == 0 { panic!("Convolve's inputs must not be 0-sized. "); } if ker > vec { return convolve_valid(kernel, vector); } let newlen = vec - ker + 1; let mut conv = DVector::::zeros(newlen); for i in 0..newlen { for j in 0..ker { conv[i] += vector[i + j] * kernel[ker - j - 1]; } } conv } /// /// The output convolution is the same size as vector, centered with respect to the ‘full’ output. /// pub fn convolve_same, Q: Storage>( vector: Vector, kernel: Vector, ) -> Matrix> { let vec = vector.len(); let ker = kernel.len(); if vec == 0 || ker == 0 { panic!("Convolve's inputs must not be 0-sized. "); } if ker > vec { return convolve_same(kernel, vector); } let mut conv = DVector::::zeros(vec); for i in 0..vec { for j in 0..ker { let val = if i + j < 1 || i + j >= vec + 1 { zero::() } else { vector[i + j - 1] }; conv[i] += val * kernel[ker - j - 1]; } } conv }