#[cfg(feature = "serde-serialize")] use serde::{Deserialize, Serialize}; use num::Zero; use num_complex::Complex; use simba::scalar::RealField; use crate::ComplexHelper; use na::allocator::Allocator; use na::dimension::{Const, Dim}; use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar}; use lapack; /// Generalized eigenvalues and generalized eigenvectors (left and right) of a pair of N*N real square matrices. /// /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 /// /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) /// of (A,B) satisfies /// /// A * v(j) = lambda(j) * B * v(j). /// /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) /// of (A,B) satisfies /// /// u(j)**H * A = lambda(j) * u(j)**H * B . /// where u(j)**H is the conjugate-transpose of u(j). #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde-serialize", serde( bound(serialize = "DefaultAllocator: Allocator + Allocator, OVector: Serialize, OMatrix: Serialize") ) )] #[cfg_attr( feature = "serde-serialize", serde( bound(deserialize = "DefaultAllocator: Allocator + Allocator, OVector: Deserialize<'de>, OMatrix: Deserialize<'de>") ) )] #[derive(Clone, Debug)] pub struct GeneralizedEigen where DefaultAllocator: Allocator + Allocator, { alphar: OVector, alphai: OVector, beta: OVector, vsl: OMatrix, vsr: OMatrix, } impl Copy for GeneralizedEigen where DefaultAllocator: Allocator + Allocator, OMatrix: Copy, OVector: Copy, { } impl GeneralizedEigen where DefaultAllocator: Allocator + Allocator, { /// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors /// via the raw returns from LAPACK's dggev and sggev routines /// /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 /// /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) /// of (A,B) satisfies /// /// A * v(j) = lambda(j) * B * v(j). /// /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) /// of (A,B) satisfies /// /// u(j)**H * A = lambda(j) * u(j)**H * B . /// where u(j)**H is the conjugate-transpose of u(j). /// /// Panics if the method did not converge. pub fn new(a: OMatrix, b: OMatrix) -> Self { Self::try_new(a, b).expect("Calculation of generalized eigenvalues failed.") } /// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's /// dggev and sggev routines /// /// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0 /// /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) /// of (A,B) satisfies /// /// A * v(j) = lambda(j) * B * v(j). /// /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) /// of (A,B) satisfies /// /// u(j)**H * A = lambda(j) * u(j)**H * B . /// where u(j)**H is the conjugate-transpose of u(j). /// /// Returns `None` if the method did not converge. pub fn try_new(mut a: OMatrix, mut b: OMatrix) -> Option { assert!( a.is_square() && b.is_square(), "Unable to compute the generalized eigenvalues of non-square matrices." ); assert!( a.shape_generic() == b.shape_generic(), "Unable to compute the generalized eigenvalues of two square matrices of different dimensions." ); let (nrows, ncols) = a.shape_generic(); let n = nrows.value(); let mut info = 0; let mut alphar = Matrix::zeros_generic(nrows, Const::<1>); let mut alphai = Matrix::zeros_generic(nrows, Const::<1>); let mut beta = Matrix::zeros_generic(nrows, Const::<1>); let mut vsl = Matrix::zeros_generic(nrows, ncols); let mut vsr = Matrix::zeros_generic(nrows, ncols); let lwork = T::xggev_work_size( b'V', b'V', n as i32, a.as_mut_slice(), n as i32, b.as_mut_slice(), n as i32, alphar.as_mut_slice(), alphai.as_mut_slice(), beta.as_mut_slice(), vsl.as_mut_slice(), n as i32, vsr.as_mut_slice(), n as i32, &mut info, ); lapack_check!(info); let mut work = vec![T::zero(); lwork as usize]; T::xggev( b'V', b'V', n as i32, a.as_mut_slice(), n as i32, b.as_mut_slice(), n as i32, alphar.as_mut_slice(), alphai.as_mut_slice(), beta.as_mut_slice(), vsl.as_mut_slice(), n as i32, vsr.as_mut_slice(), n as i32, &mut work, lwork, &mut info, ); lapack_check!(info); Some(GeneralizedEigen { alphar, alphai, beta, vsl, vsr, }) } /// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues /// /// Outputs two matrices. /// The first output matrix contains the left eigenvectors of the generalized eigenvalues /// as columns. /// The second matrix contains the right eigenvectors of the generalized eigenvalues /// as columns. /// /// The right eigenvector v(j) corresponding to the eigenvalue lambda(j) /// of (A,B) satisfies /// /// A * v(j) = lambda(j) * B * v(j) /// /// The left eigenvector u(j) corresponding to the eigenvalue lambda(j) /// of (A,B) satisfies /// /// u(j)**H * A = lambda(j) * u(j)**H * B /// where u(j)**H is the conjugate-transpose of u(j). pub fn eigenvectors(&self) -> (OMatrix, D, D>, OMatrix, D, D>) where DefaultAllocator: Allocator, D, D> + Allocator, D> + Allocator<(Complex, T), D>, { /* How the eigenvectors are built up: Since the input entries are all real, the generalized eigenvalues if complex come in pairs as a consequence of the [complex conjugate root thorem](https://en.wikipedia.org/wiki/Complex_conjugate_root_theorem) The Lapack routine output reflects this by expecting the user to unpack the real and complex eigenvalues associated eigenvectors from the real matrix output via the following procedure (Note: VL stands for the lapack real matrix output containing the left eigenvectors as columns, VR stands for the lapack real matrix output containing the right eigenvectors as columns) If the j-th and (j+1)-th eigenvalues form a complex conjugate pair, then u(j) = VL(:,j)+i*VL(:,j+1) u(j+1) = VL(:,j)-i*VL(:,j+1) and u(j) = VR(:,j)+i*VR(:,j+1) v(j+1) = VR(:,j)-i*VR(:,j+1). */ let n = self.vsl.shape().0; let mut l = self.vsl.map(|x| Complex::new(x, T::RealField::zero())); let mut r = self.vsr.map(|x| Complex::new(x, T::RealField::zero())); let eigenvalues = self.raw_eigenvalues(); let mut c = 0; while c < n { if eigenvalues[c].0.im.abs() != T::RealField::zero() && c + 1 < n { // taking care of the left eigenvector matrix l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| { *r = Complex::new(r.re.clone(), i.clone()); }); l.column_mut(c + 1).zip_apply(&self.vsl.column(c), |i, r| { *i = Complex::new(r.clone(), -i.re.clone()); }); // taking care of the right eigenvector matrix r.column_mut(c).zip_apply(&self.vsr.column(c + 1), |r, i| { *r = Complex::new(r.re.clone(), i.clone()); }); r.column_mut(c + 1).zip_apply(&self.vsr.column(c), |i, r| { *i = Complex::new(r.clone(), -i.re.clone()); }); c += 2; } else { c += 1; } } (l, r) } /// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alphai), beta) /// straight from LAPACK #[must_use] pub fn raw_eigenvalues(&self) -> OVector<(Complex, T), D> where DefaultAllocator: Allocator<(Complex, T), D>, { let mut out = Matrix::from_element_generic( self.vsl.shape_generic().0, Const::<1>, (Complex::zero(), T::RealField::zero()), ); for i in 0..out.len() { out[i] = (Complex::new(self.alphar[i], self.alphai[i]), self.beta[i]) } out } } /* * * Lapack functions dispatch. * */ /// Trait implemented by scalars for which Lapack implements the RealField GeneralizedEigen decomposition. pub trait GeneralizedEigenScalar: Scalar { #[allow(missing_docs)] fn xggev( jobvsl: u8, jobvsr: u8, n: i32, a: &mut [Self], lda: i32, b: &mut [Self], ldb: i32, alphar: &mut [Self], alphai: &mut [Self], beta: &mut [Self], vsl: &mut [Self], ldvsl: i32, vsr: &mut [Self], ldvsr: i32, work: &mut [Self], lwork: i32, info: &mut i32, ); #[allow(missing_docs)] fn xggev_work_size( jobvsl: u8, jobvsr: u8, n: i32, a: &mut [Self], lda: i32, b: &mut [Self], ldb: i32, alphar: &mut [Self], alphai: &mut [Self], beta: &mut [Self], vsl: &mut [Self], ldvsl: i32, vsr: &mut [Self], ldvsr: i32, info: &mut i32, ) -> i32; } macro_rules! generalized_eigen_scalar_impl ( ($N: ty, $xggev: path) => ( impl GeneralizedEigenScalar for $N { #[inline] fn xggev(jobvsl: u8, jobvsr: u8, n: i32, a: &mut [$N], lda: i32, b: &mut [$N], ldb: i32, alphar: &mut [$N], alphai: &mut [$N], beta : &mut [$N], vsl: &mut [$N], ldvsl: i32, vsr: &mut [$N], ldvsr: i32, work: &mut [$N], lwork: i32, info: &mut i32) { unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info); } } #[inline] fn xggev_work_size(jobvsl: u8, jobvsr: u8, n: i32, a: &mut [$N], lda: i32, b: &mut [$N], ldb: i32, alphar: &mut [$N], alphai: &mut [$N], beta : &mut [$N], vsl: &mut [$N], ldvsl: i32, vsr: &mut [$N], ldvsr: i32, info: &mut i32) -> i32 { let mut work = [ Zero::zero() ]; let lwork = -1 as i32; unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, info); } ComplexHelper::real_part(work[0]) as i32 } } ) ); generalized_eigen_scalar_impl!(f32, lapack::sggev); generalized_eigen_scalar_impl!(f64, lapack::dggev);