#[cfg(feature = "arbitrary")] use crate::base::storage::Owned; #[cfg(feature = "arbitrary")] use quickcheck::{Arbitrary, Gen}; use num::Zero; use rand::distributions::{Distribution, OpenClosed01, Standard}; use rand::Rng; use simba::scalar::RealField; use simba::simd::{SimdBool, SimdRealField}; use std::ops::Neg; use crate::base::dimension::{U1, U2, U3}; use crate::base::storage::Storage; use crate::base::{Matrix2, Matrix3, MatrixN, Unit, Vector, Vector1, Vector3, VectorN}; use crate::geometry::{Rotation2, Rotation3, UnitComplex, UnitQuaternion}; /* * * 2D Rotation matrix. * */ impl Rotation2 { /// Builds a 2 dimensional rotation matrix from an angle in radian. /// /// # Example /// /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Rotation2, Point2}; /// let rot = Rotation2::new(f32::consts::FRAC_PI_2); /// /// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0)); /// ``` pub fn new(angle: N) -> Self { let (sia, coa) = angle.simd_sin_cos(); Self::from_matrix_unchecked(Matrix2::new(coa, -sia, sia, coa)) } /// Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector. /// /// /// This is generally used in the context of generic programming. Using /// the `::new(angle)` method instead is more common. #[inline] pub fn from_scaled_axis>(axisangle: Vector) -> Self { Self::new(axisangle[0]) } /// Builds a rotation matrix by extracting the rotation part of the given transformation `m`. /// /// This is an iterative method. See `.from_matrix_eps` to provide mover /// convergence parameters and starting solution. /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. pub fn from_matrix(m: &Matrix2) -> Self where N: RealField { Self::from_matrix_eps(m, N::default_epsilon(), 0, Self::identity()) } /// Builds a rotation matrix by extracting the rotation part of the given transformation `m`. /// /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. /// /// # Parameters /// /// * `m`: the matrix from which the rotational part is to be extracted. /// * `eps`: the angular errors tolerated between the current rotation and the optimal one. /// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`. /// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close /// to the actual solution is provided. Can be set to `Rotation2::identity()` if no other /// guesses come to mind. pub fn from_matrix_eps(m: &Matrix2, eps: N, mut max_iter: usize, guess: Self) -> Self where N: RealField { if max_iter == 0 { max_iter = usize::max_value(); } let mut rot = guess.into_inner(); for _ in 0..max_iter { let axis = rot.column(0).perp(&m.column(0)) + rot.column(1).perp(&m.column(1)); let denom = rot.column(0).dot(&m.column(0)) + rot.column(1).dot(&m.column(1)); let angle = axis / (denom.abs() + N::default_epsilon()); if angle.abs() > eps { rot = Self::new(angle) * rot; } else { break; } } Self::from_matrix_unchecked(rot) } /// The rotation matrix required to align `a` and `b` but with its angle. /// /// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector2, Rotation2}; /// let a = Vector2::new(1.0, 2.0); /// let b = Vector2::new(2.0, 1.0); /// let rot = Rotation2::rotation_between(&a, &b); /// assert_relative_eq!(rot * a, b); /// assert_relative_eq!(rot.inverse() * b, a); /// ``` #[inline] pub fn rotation_between(a: &Vector, b: &Vector) -> Self where N: RealField, SB: Storage, SC: Storage, { crate::convert(UnitComplex::rotation_between(a, b).to_rotation_matrix()) } /// The smallest rotation needed to make `a` and `b` collinear and point toward the same /// direction, raised to the power `s`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector2, Rotation2}; /// let a = Vector2::new(1.0, 2.0); /// let b = Vector2::new(2.0, 1.0); /// let rot2 = Rotation2::scaled_rotation_between(&a, &b, 0.2); /// let rot5 = Rotation2::scaled_rotation_between(&a, &b, 0.5); /// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6); /// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_rotation_between( a: &Vector, b: &Vector, s: N, ) -> Self where N: RealField, SB: Storage, SC: Storage, { crate::convert(UnitComplex::scaled_rotation_between(a, b, s).to_rotation_matrix()) } /// The rotation angle. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Rotation2; /// let rot = Rotation2::new(1.78); /// assert_relative_eq!(rot.angle(), 1.78); /// ``` #[inline] pub fn angle(&self) -> N { self.matrix()[(1, 0)].simd_atan2(self.matrix()[(0, 0)]) } /// The rotation angle needed to make `self` and `other` coincide. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Rotation2; /// let rot1 = Rotation2::new(0.1); /// let rot2 = Rotation2::new(1.7); /// assert_relative_eq!(rot1.angle_to(&rot2), 1.6); /// ``` #[inline] pub fn angle_to(&self, other: &Self) -> N { self.rotation_to(other).angle() } /// The rotation matrix needed to make `self` and `other` coincide. /// /// The result is such that: `self.rotation_to(other) * self == other`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Rotation2; /// let rot1 = Rotation2::new(0.1); /// let rot2 = Rotation2::new(1.7); /// let rot_to = rot1.rotation_to(&rot2); /// /// assert_relative_eq!(rot_to * rot1, rot2); /// assert_relative_eq!(rot_to.inverse() * rot2, rot1); /// ``` #[inline] pub fn rotation_to(&self, other: &Self) -> Self { other * self.inverse() } /// Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated /// computations might cause the matrix from progressively not being orthonormal anymore. #[inline] pub fn renormalize(&mut self) where N: RealField { let mut c = UnitComplex::from(*self); let _ = c.renormalize(); *self = Self::from_matrix_eps(self.matrix(), N::default_epsilon(), 0, c.into()) } /// Raise the quaternion to a given floating power, i.e., returns the rotation with the angle /// of `self` multiplied by `n`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Rotation2; /// let rot = Rotation2::new(0.78); /// let pow = rot.powf(2.0); /// assert_relative_eq!(pow.angle(), 2.0 * 0.78); /// ``` #[inline] pub fn powf(&self, n: N) -> Self { Self::new(self.angle() * n) } /// The rotation angle returned as a 1-dimensional vector. /// /// This is generally used in the context of generic programming. Using /// the `.angle()` method instead is more common. #[inline] pub fn scaled_axis(&self) -> VectorN { Vector1::new(self.angle()) } } impl Distribution> for Standard where N::Element: SimdRealField, OpenClosed01: Distribution, { /// Generate a uniformly distributed random rotation. #[inline] fn sample<'a, R: Rng + ?Sized>(&self, rng: &'a mut R) -> Rotation2 { Rotation2::new(rng.sample(OpenClosed01) * N::simd_two_pi()) } } #[cfg(feature = "arbitrary")] impl Arbitrary for Rotation2 where N::Element: SimdRealField, Owned: Send, { #[inline] fn arbitrary(g: &mut G) -> Self { Self::new(N::arbitrary(g)) } } /* * * 3D Rotation matrix. * */ impl Rotation3 where N::Element: SimdRealField { /// Builds a 3 dimensional rotation matrix from an axis and an angle. /// /// # Arguments /// * `axisangle` - A vector representing the rotation. Its magnitude is the amount of rotation /// in radian. Its direction is the axis of rotation. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Rotation3, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let rot = Rotation3::new(axisangle); /// /// assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // A zero vector yields an identity. /// assert_eq!(Rotation3::new(Vector3::::zeros()), Rotation3::identity()); /// ``` pub fn new>(axisangle: Vector) -> Self { let axisangle = axisangle.into_owned(); let (axis, angle) = Unit::new_and_get(axisangle); Self::from_axis_angle(&axis, angle) } /// Builds a rotation matrix by extracting the rotation part of the given transformation `m`. /// /// This is an iterative method. See `.from_matrix_eps` to provide mover /// convergence parameters and starting solution. /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. pub fn from_matrix(m: &Matrix3) -> Self where N: RealField { Self::from_matrix_eps(m, N::default_epsilon(), 0, Self::identity()) } /// Builds a rotation matrix by extracting the rotation part of the given transformation `m`. /// /// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al. /// /// # Parameters /// /// * `m`: the matrix from which the rotational part is to be extracted. /// * `eps`: the angular errors tolerated between the current rotation and the optimal one. /// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`. /// * `guess`: a guess of the solution. Convergence will be significantly faster if an initial solution close /// to the actual solution is provided. Can be set to `Rotation3::identity()` if no other /// guesses come to mind. pub fn from_matrix_eps(m: &Matrix3, eps: N, mut max_iter: usize, guess: Self) -> Self where N: RealField { if max_iter == 0 { max_iter = usize::max_value(); } let mut rot = guess.into_inner(); for _ in 0..max_iter { let axis = rot.column(0).cross(&m.column(0)) + rot.column(1).cross(&m.column(1)) + rot.column(2).cross(&m.column(2)); let denom = rot.column(0).dot(&m.column(0)) + rot.column(1).dot(&m.column(1)) + rot.column(2).dot(&m.column(2)); let axisangle = axis / (denom.abs() + N::default_epsilon()); if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, eps) { rot = Rotation3::from_axis_angle(&axis, angle) * rot; } else { break; } } Self::from_matrix_unchecked(rot) } /// Builds a 3D rotation matrix from an axis scaled by the rotation angle. /// /// This is the same as `Self::new(axisangle)`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Rotation3, Point3, Vector3}; /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let rot = Rotation3::new(axisangle); /// /// assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // A zero vector yields an identity. /// assert_eq!(Rotation3::from_scaled_axis(Vector3::::zeros()), Rotation3::identity()); /// ``` pub fn from_scaled_axis>(axisangle: Vector) -> Self { Self::new(axisangle) } /// Builds a 3D rotation matrix from an axis and a rotation angle. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Rotation3, Point3, Vector3}; /// let axis = Vector3::y_axis(); /// let angle = f32::consts::FRAC_PI_2; /// // Point and vector being transformed in the tests. /// let pt = Point3::new(4.0, 5.0, 6.0); /// let vec = Vector3::new(4.0, 5.0, 6.0); /// let rot = Rotation3::from_axis_angle(&axis, angle); /// /// assert_eq!(rot.axis().unwrap(), axis); /// assert_eq!(rot.angle(), angle); /// assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6); /// /// // A zero vector yields an identity. /// assert_eq!(Rotation3::from_scaled_axis(Vector3::::zeros()), Rotation3::identity()); /// ``` pub fn from_axis_angle(axis: &Unit>, angle: N) -> Self where SB: Storage { angle.simd_ne(N::zero()).if_else( || { let ux = axis.as_ref()[0]; let uy = axis.as_ref()[1]; let uz = axis.as_ref()[2]; let sqx = ux * ux; let sqy = uy * uy; let sqz = uz * uz; let (sin, cos) = angle.simd_sin_cos(); let one_m_cos = N::one() - cos; Self::from_matrix_unchecked(MatrixN::::new( sqx + (N::one() - sqx) * cos, ux * uy * one_m_cos - uz * sin, ux * uz * one_m_cos + uy * sin, ux * uy * one_m_cos + uz * sin, sqy + (N::one() - sqy) * cos, uy * uz * one_m_cos - ux * sin, ux * uz * one_m_cos - uy * sin, uy * uz * one_m_cos + ux * sin, sqz + (N::one() - sqz) * cos, )) }, || Self::identity(), ) } /// Creates a new rotation from Euler angles. /// /// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Rotation3; /// let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3); /// let euler = rot.euler_angles(); /// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); /// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); /// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6); /// ``` pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self { let (sr, cr) = roll.simd_sin_cos(); let (sp, cp) = pitch.simd_sin_cos(); let (sy, cy) = yaw.simd_sin_cos(); Self::from_matrix_unchecked(MatrixN::::new( cy * cp, cy * sp * sr - sy * cr, cy * sp * cr + sy * sr, sy * cp, sy * sp * sr + cy * cr, sy * sp * cr - cy * sr, -sp, cp * sr, cp * cr, )) } /// Creates Euler angles from a rotation. /// /// The angles are produced in the form (roll, pitch, yaw). #[deprecated(note = "This is renamed to use `.euler_angles()`.")] pub fn to_euler_angles(&self) -> (N, N, N) where N: RealField { self.euler_angles() } /// Euler angles corresponding to this rotation from a rotation. /// /// The angles are produced in the form (roll, pitch, yaw). /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::Rotation3; /// let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3); /// let euler = rot.euler_angles(); /// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6); /// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6); /// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6); /// ``` pub fn euler_angles(&self) -> (N, N, N) where N: RealField { // Implementation informed by "Computing Euler angles from a rotation matrix", by Gregory G. Slabaugh // https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.371.6578 if self[(2, 0)].abs() < N::one() { let yaw = -self[(2, 0)].asin(); let roll = (self[(2, 1)] / yaw.cos()).atan2(self[(2, 2)] / yaw.cos()); let pitch = (self[(1, 0)] / yaw.cos()).atan2(self[(0, 0)] / yaw.cos()); (roll, yaw, pitch) } else if self[(2, 0)] <= -N::one() { (self[(0, 1)].atan2(self[(0, 2)]), N::frac_pi_2(), N::zero()) } else { ( -self[(0, 1)].atan2(-self[(0, 2)]), -N::frac_pi_2(), N::zero(), ) } } /// Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated /// computations might cause the matrix from progressively not being orthonormal anymore. #[inline] pub fn renormalize(&mut self) where N: RealField { let mut c = UnitQuaternion::from(*self); let _ = c.renormalize(); *self = Self::from_matrix_eps(self.matrix(), N::default_epsilon(), 0, c.into()) } /// Creates a rotation that corresponds to the local frame of an observer standing at the /// origin and looking toward `dir`. /// /// It maps the `z` axis to the direction `dir`. /// /// # Arguments /// * dir - The look direction, that is, direction the matrix `z` axis will be aligned with. /// * up - The vertical direction. The only requirement of this parameter is to not be /// collinear to `dir`. Non-collinearity is not checked. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Rotation3, Vector3}; /// let dir = Vector3::new(1.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// let rot = Rotation3::face_towards(&dir, &up); /// assert_relative_eq!(rot * Vector3::z(), dir.normalize()); /// ``` #[inline] pub fn face_towards(dir: &Vector, up: &Vector) -> Self where SB: Storage, SC: Storage, { let zaxis = dir.normalize(); let xaxis = up.cross(&zaxis).normalize(); let yaxis = zaxis.cross(&xaxis).normalize(); Self::from_matrix_unchecked(MatrixN::::new( xaxis.x, yaxis.x, zaxis.x, xaxis.y, yaxis.y, zaxis.y, xaxis.z, yaxis.z, zaxis.z, )) } /// Deprecated: Use [Rotation3::face_towards] instead. #[deprecated(note = "renamed to `face_towards`")] pub fn new_observer_frames(dir: &Vector, up: &Vector) -> Self where SB: Storage, SC: Storage, { Self::face_towards(dir, up) } /// Builds a right-handed look-at view matrix without translation. /// /// It maps the view direction `dir` to the **negative** `z` axis. /// This conforms to the common notion of right handed look-at matrix from the computer /// graphics community. /// /// # Arguments /// * dir - The direction toward which the camera looks. /// * up - A vector approximately aligned with required the vertical axis. The only /// requirement of this parameter is to not be collinear to `dir`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Rotation3, Vector3}; /// let dir = Vector3::new(1.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// let rot = Rotation3::look_at_rh(&dir, &up); /// assert_relative_eq!(rot * dir.normalize(), -Vector3::z()); /// ``` #[inline] pub fn look_at_rh(dir: &Vector, up: &Vector) -> Self where SB: Storage, SC: Storage, { Self::face_towards(&dir.neg(), up).inverse() } /// Builds a left-handed look-at view matrix without translation. /// /// It maps the view direction `dir` to the **positive** `z` axis. /// This conforms to the common notion of left handed look-at matrix from the computer /// graphics community. /// /// # Arguments /// * dir - The direction toward which the camera looks. /// * up - A vector approximately aligned with required the vertical axis. The only /// requirement of this parameter is to not be collinear to `dir`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use std::f32; /// # use nalgebra::{Rotation3, Vector3}; /// let dir = Vector3::new(1.0, 2.0, 3.0); /// let up = Vector3::y(); /// /// let rot = Rotation3::look_at_lh(&dir, &up); /// assert_relative_eq!(rot * dir.normalize(), Vector3::z()); /// ``` #[inline] pub fn look_at_lh(dir: &Vector, up: &Vector) -> Self where SB: Storage, SC: Storage, { Self::face_towards(dir, up).inverse() } /// The rotation matrix required to align `a` and `b` but with its angle. /// /// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector3, Rotation3}; /// let a = Vector3::new(1.0, 2.0, 3.0); /// let b = Vector3::new(3.0, 1.0, 2.0); /// let rot = Rotation3::rotation_between(&a, &b).unwrap(); /// assert_relative_eq!(rot * a, b, epsilon = 1.0e-6); /// assert_relative_eq!(rot.inverse() * b, a, epsilon = 1.0e-6); /// ``` #[inline] pub fn rotation_between(a: &Vector, b: &Vector) -> Option where N: RealField, SB: Storage, SC: Storage, { Self::scaled_rotation_between(a, b, N::one()) } /// The smallest rotation needed to make `a` and `b` collinear and point toward the same /// direction, raised to the power `s`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Vector3, Rotation3}; /// let a = Vector3::new(1.0, 2.0, 3.0); /// let b = Vector3::new(3.0, 1.0, 2.0); /// let rot2 = Rotation3::scaled_rotation_between(&a, &b, 0.2).unwrap(); /// let rot5 = Rotation3::scaled_rotation_between(&a, &b, 0.5).unwrap(); /// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6); /// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_rotation_between( a: &Vector, b: &Vector, n: N, ) -> Option where N: RealField, SB: Storage, SC: Storage, { // FIXME: code duplication with Rotation. if let (Some(na), Some(nb)) = (a.try_normalize(N::zero()), b.try_normalize(N::zero())) { let c = na.cross(&nb); if let Some(axis) = Unit::try_new(c, N::default_epsilon()) { return Some(Self::from_axis_angle(&axis, na.dot(&nb).acos() * n)); } // Zero or PI. if na.dot(&nb) < N::zero() { // PI // // The rotation axis is undefined but the angle not zero. This is not a // simple rotation. return None; } } Some(Self::identity()) } /// The rotation angle in [0; pi]. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Unit, Rotation3, Vector3}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let rot = Rotation3::from_axis_angle(&axis, 1.78); /// assert_relative_eq!(rot.angle(), 1.78); /// ``` #[inline] pub fn angle(&self) -> N { ((self.matrix()[(0, 0)] + self.matrix()[(1, 1)] + self.matrix()[(2, 2)] - N::one()) / crate::convert(2.0)) .simd_acos() } /// The rotation axis. Returns `None` if the rotation angle is zero or PI. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Rotation3, Vector3, Unit}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let angle = 1.2; /// let rot = Rotation3::from_axis_angle(&axis, angle); /// assert_relative_eq!(rot.axis().unwrap(), axis); /// /// // Case with a zero angle. /// let rot = Rotation3::from_axis_angle(&axis, 0.0); /// assert!(rot.axis().is_none()); /// ``` #[inline] pub fn axis(&self) -> Option>> where N: RealField { let axis = VectorN::::new( self.matrix()[(2, 1)] - self.matrix()[(1, 2)], self.matrix()[(0, 2)] - self.matrix()[(2, 0)], self.matrix()[(1, 0)] - self.matrix()[(0, 1)], ); Unit::try_new(axis, N::default_epsilon()) } /// The rotation axis multiplied by the rotation angle. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Rotation3, Vector3, Unit}; /// let axisangle = Vector3::new(0.1, 0.2, 0.3); /// let rot = Rotation3::new(axisangle); /// assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6); /// ``` #[inline] pub fn scaled_axis(&self) -> Vector3 where N: RealField { if let Some(axis) = self.axis() { axis.into_inner() * self.angle() } else { Vector::zero() } } /// The rotation axis and angle in ]0, pi] of this unit quaternion. /// /// Returns `None` if the angle is zero. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Rotation3, Vector3, Unit}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let angle = 1.2; /// let rot = Rotation3::from_axis_angle(&axis, angle); /// let axis_angle = rot.axis_angle().unwrap(); /// assert_relative_eq!(axis_angle.0, axis); /// assert_relative_eq!(axis_angle.1, angle); /// /// // Case with a zero angle. /// let rot = Rotation3::from_axis_angle(&axis, 0.0); /// assert!(rot.axis_angle().is_none()); /// ``` #[inline] pub fn axis_angle(&self) -> Option<(Unit>, N)> where N: RealField { if let Some(axis) = self.axis() { Some((axis, self.angle())) } else { None } } /// The rotation angle needed to make `self` and `other` coincide. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Rotation3, Vector3}; /// let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0); /// let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1); /// assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6); /// ``` #[inline] pub fn angle_to(&self, other: &Self) -> N { self.rotation_to(other).angle() } /// The rotation matrix needed to make `self` and `other` coincide. /// /// The result is such that: `self.rotation_to(other) * self == other`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Rotation3, Vector3}; /// let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0); /// let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1); /// let rot_to = rot1.rotation_to(&rot2); /// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6); /// ``` #[inline] pub fn rotation_to(&self, other: &Self) -> Self { other * self.inverse() } /// Raise the quaternion to a given floating power, i.e., returns the rotation with the same /// axis as `self` and an angle equal to `self.angle()` multiplied by `n`. /// /// # Example /// ``` /// # #[macro_use] extern crate approx; /// # use nalgebra::{Rotation3, Vector3, Unit}; /// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0)); /// let angle = 1.2; /// let rot = Rotation3::from_axis_angle(&axis, angle); /// let pow = rot.powf(2.0); /// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6); /// assert_eq!(pow.angle(), 2.4); /// ``` #[inline] pub fn powf(&self, n: N) -> Self where N: RealField { if let Some(axis) = self.axis() { Self::from_axis_angle(&axis, self.angle() * n) } else if self.matrix()[(0, 0)] < N::zero() { let minus_id = MatrixN::::from_diagonal_element(-N::one()); Self::from_matrix_unchecked(minus_id) } else { Self::identity() } } } impl Distribution> for Standard where N::Element: SimdRealField, OpenClosed01: Distribution, { /// Generate a uniformly distributed random rotation. #[inline] fn sample<'a, R: Rng + ?Sized>(&self, rng: &mut R) -> Rotation3 { // James Arvo. // Fast random rotation matrices. // In D. Kirk, editor, Graphics Gems III, pages 117-120. Academic, New York, 1992. // Compute a random rotation around Z let theta = N::simd_two_pi() * rng.sample(OpenClosed01); let (ts, tc) = theta.simd_sin_cos(); let a = MatrixN::::new( tc, ts, N::zero(), -ts, tc, N::zero(), N::zero(), N::zero(), N::one(), ); // Compute a random rotation *of* Z let phi = N::simd_two_pi() * rng.sample(OpenClosed01); let z = rng.sample(OpenClosed01); let (ps, pc) = phi.simd_sin_cos(); let sqrt_z = z.simd_sqrt(); let v = Vector3::new(pc * sqrt_z, ps * sqrt_z, (N::one() - z).simd_sqrt()); let mut b = v * v.transpose(); b += b; b -= MatrixN::::identity(); Rotation3::from_matrix_unchecked(b * a) } } #[cfg(feature = "arbitrary")] impl Arbitrary for Rotation3 where N::Element: SimdRealField, Owned: Send, Owned: Send, { #[inline] fn arbitrary(g: &mut G) -> Self { Self::new(VectorN::arbitrary(g)) } }